Paper |
Title |
Page |
MOP009 |
Dragon-I Linear Induction Accelerator
|
49 |
|
- J. Deng, N. Cheng, G. Dai, Z. Dai, B. Ding, J. Li, J. Shi, H. Wang, K. Zhang, L. Zhang
CAEP/IFP, Mainyang, Sichuan
|
|
|
The best quality induction linac in the world, named Dragon-I, has been built at Institute of Fluid Physics, China Academy of Engineering Physics. It can produce 2.5~3kA high current electron beam with energy of 20MeV and pulse width of 70ns. The spot size of about 1mm diameter has been achieved with beam current greater than 2.5kA. The design of Dragon-I facility is introduced briefly. The commissioning and results of Dragon-I are presented in the paper including the most recent time resolved measurements of beam parameters.
|
|
THP065 |
High-Gradient Generation in Dielectric-Loaded Wakefield Structures
|
731 |
|
- M. E. Conde, S. P. Antipov, F. J. Franchini, W. Gai, F. Gao, C.-J. Jing, R. Konecny, W. Liu, J. G. Power, H. Wang, Z. M. Yusof
ANL, Argonne, Illinois
|
|
|
Dielectric loaded wakefield structures have potential to be used as high gradient accelerator components. Using the high current drive beam at the Argonne Wakefield Accelerator Facility, we employed cylindrical dielectric loaded wakefield structures to generate accelerating fields of up to 43 MV/m at 14 GHz. Short electron bunches (13 ps FWHM) of up to 86 nC are used to drive these fields, either as single bunches or as bunch trains. One of these structures consists of a 23 mm long cylindrical ceramic tube (cordierite) with a dielectric constant of 4.76, and inner diameter of 10 mm, inserted into a cylindrical copper waveguide. This standing-wave structure has a field probe near the outer edge of the dielectric to sample the RF fields generated by the electron bunches. The signal is sent to a mixer circuit, where the 14 GHz signal is down converted to 5 GHz and then sent to an oscilloscope. A similar structure, with smaller inner diameter and an operating frequency of 9 GHz, is ready for initial tests. Its accelerating fields will be twice as high as the fields in the 14 GHz structure, for the same bunch charge.
|
|