A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tochitsky, S.

Paper Title Page
MOP029 Laser Beat-Wave Microbunching of Relativistic Electron Beam in the THz Range 100
 
  • S. Tochitsky, C. Joshi, C. Pellegrini, S. Reiche, J. B. Rosenzweig, C. Sung
    UCLA, Los Angeles, California
 
  Laser-driven plasma accelerators have recently demonstrated a ~1GeV energy gain of self-trapped electrons in a several-centimeter-long plasma channel. Potential staging of such devices will require external injection of an electron beam prebunched on the scale of 1-10 THz into a plasma accelerating structure or plasma LINAC. Seeded FEL/IFEL techniques can be used for modulation of the electron beam longitudinally on the radiation wavelength. However a seed source in this spectral range is not available. At the UCLA Neptune Laboratory a Laser Beat-Wave (LBW) microbunching experiment has begun. Interaction of the electron beam and the LBW results in ponderomotive acceleration and energy modulation on the THz scale. This stage is followed by a ballistic drift of the electrons, where the gained energy modulation transfers to the beam current modulation. Then the beam is sent into a 33-cm long undulator, where a coherent start-up of THz radiation takes place providing efficient bunching of the whole beam. The performance of LBW bunching is simulated and analyzed using 3D FEL code for the parameters of an existing photoinjector and two-wavelength TW CO2 laser system.