Paper |
Title |
Page |
THP013 |
Adaptive Control of a SC Cavity Based on the Physical Parameters Identification
|
595 |
|
- T. Czarski, W. J. Jalmuzna, W. Koprek, K. T. Pozniak, R. S. Romaniuk
Warsaw University of Technology, Institute of Electronic Systems, Warsaw
- S. Simrock
DESY, Hamburg
|
|
|
The paper presents preliminary results of SRF cavity control by FPGA system called "SIMCON". Algebraic model of the control system including calibration and correction procedure of the signal path was discussed. In particular, there were debated the following aspects of the automatic control procedures: compensation of the input offset, calibration of the cavity channel and correction of the klystron channel (linearization). Functional structure of FPGA based SIMCON board for LLRF Cavity Control System was explained. Alghoritm of adaptive control for cavity driven with FPGA controller supported by MATLAB system was discussed. Experimental results for 8 cavities of ACC1 module controlled by the SIMCON board were shown. The resuls lead to novel method of parameters identification of cavity system in noisy and no stationary conditions.
|
|
THP097 |
FPGA BASED DIGITAL RF CONTROL FOR FLASH
|
809 |
|
- W. J. Jalmuzna, P. F. Fafara, W. Koprek, P. K. Perkuszewski, K. T. Pozniak, P. Pucyk, R. S. Romaniuk
Warsaw University of Technology, Institute of Electronic Systems, Warsaw
- S. Simrock
DESY, Hamburg
|
|
|
Most parts of the LLRF control system used in FLASH are based on the DSP processors. Actual computation power of the system is close to the limit, the algorithm is performed in a time longer than 1μs. The only way to extend the system with new features was to add more DSP processors. This solution requires integration of new DSP board into existing system. It may cause some additional problems and delays in the machine operations. During past years very fast progress on the FPGA market was observed. Nowadays FPGA chips have reached the computation power that can be compared with DSP processors. These chips offer variety of the embedded solutions such as PowerPC, Microblaze, Nios which can be easily used in addition to fast, parallel signal processing. Moreover large number of user pins makes it possible to integrate all the elements necessary for the control into one PCB board. Therefore, for the evaluation purposes, some parts of the system were replaced by FPGA based boards. This article summarizes the FPGA boards that are currently in use and describes algorithms executed by these boards.
|
|