Paper | Title | Page |
---|---|---|
TUP072 | Beam Dynamics Studies of the 8-GeV Superconducting H- Linac | 420 |
|
||
A 8-GeV H-minus linac has been proposed to enhance the accelerator complex at Fermilab as a high-intensity neutrino source.* The linac is based on 430 independently phased superconducting cavities. The front-end of the linac (up to 420 MeV) operating at 325 MHz is based on RIA-type multi-spoke cavities. The rest of the linac (from 420 MeV to 8 GeV) uses ILC-type elliptical cavities. We have performed large scale end-to-end beam dynamics simulations of the driver linac using the code TRACK** including all sources of machine errors and detailed beam loss analysis. The results of these simulations will be presented and discussed.
* G. W. Foster and J. A. MacLachlan, Proceedings of LINAC-2002, p.826. |
||
TUP075 | Automatic Transverse and Longitudinal Tuning of Single and Multiple Charge State Ion Beams | 429 |
|
||
Extensive end-to-end beam dynamics simulations of the RIA driver linac using the code TRACK and including all sources of machine errors and detailed beam loss analysis* showed that the losses could be significantly reduced for a fine-tuned linac. For this purpose we have developed an automatic longitudinal tuning proceedure for multiple charge state heavy-ion beams.** For a complete tuning tool, we have recently developed an automatic transverse tuning proceedure to produce smooth transverse beam dynamics by minimizing the RMS beam sizes after each focusing period. We have also extended the automatic longitudinal proceedure to produce smooth longitudinal beam dynamics for single and multiple charge state ion beams. In addition to improving an existing tune, this powerful automatic beam tuning tool can be used to retune the linac and restore the beam after one or more elements failures and to develop new tunes for ion beams with different Q/A ratios. After presenting the method, the results from some applications will be presented and discussed.
* P. Ostroumov, V. Assev and B. Mustapha, Phys. Rev. ST-AB 7 (2004) 090101 |
||
TUP076 | First TRACK Simulations of the SNS Linac | 432 |
|
||
In an effort to benchmark the code TRACK* against the recent commissionnig data from the SNS linac, we started updating the code TRACK to support SNS-type elements like DTL's and CCL's. 2D electric field tables were computed using SUPERFISH and 3D magnetic fields from PMQ's were calculated using EMS-Studio. A special DTL routine was implemented and successfully tested. The first results of TRACK simulations using a realistic beam will be presented. A comparison with the code PARMILA will also be presented and discussed.
* "TRACK: The New Beam Dynamics code", V. N. Aseev et al, in Proceedings |
||
TUP079 | RIAPMTQ/IMPACT: Beam-Dynamics Simulation Tool for RIA | 441 |
|
||
We describe a multiple-charge-state simulation-code package for end-to-end computer simulations of the RIA heavy-ion driver linac, extending from the low-energy beam transport after the ECR source to the end of the linac. The work is being performed by a collaboration including LANL, LBNL, ANL, and MSU. The package consists of two codes, the code RIAPMTQ for the linac front end including the LEBT, RFQ, and MEBT, and the code IMPACT for the superconducting linac. This code package has been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The simulation tool will allow high-statistics runs on parallel supercomputing platforms, such as NERSC, as well as runs on desktop PC computers for low-statistics design work. It will address an important near-term need for the RIA project, allowing evaluations of candidate designs with respect to beam-dynamics performance including beam losses, which can be compared with predictions of other existing simulation codes. |