A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Meusel, O.

Paper Title Page
MOP051 Development of an Intense Neutron Source FRANZ in Frankfurt 159
 
  • O. Meusel, L. P. Chau, I. Mueller, U. Ratzinger, A. Schempp, K. Volk, C. Zhang
    IAP, Frankfurt-am-Main
  • S. Minaev
    ITEP, Moscow
 
  The Stern-Gerlach-Center recently founded at the University of Frankfurt gives the possibility for experiments in accelerator physic, astrophysic and material sience research. It is planned to develop an intense neutron generator within the next 4 years. The proton driver linac consists of a high voltage terminal already under construction to provide primary proton beam energies of max. 150 keV. A volume type ion source will deliver a DC beam current of 100-250 mA at a proton fraction of 90%. A low energy beam transport using two solenoids will inject the proton beam into an RFQ while a chopper at the entrance of the RFQ will create a pulse length of 50 ns and a repetition rate up to 250 kHz. A drift tube cavity for the variation of the beam energy in a range of 1.9 – 2.4 MeV will be installed downstream of the RFQ. Finally a bunch compressor of the Mobley type forms a proton pulse length of 1 ns at the Li target. The maximum energies of the neutrons being adjustable between 100 keV and 500 keV by the primary proton beam. The detailed concept of the high current injector, numerical simulation of beam transport and losses will be presented together with first experimental results.  
TU3001 High-Current Proton Beam Investigations at the SILHI-LEBT at CEA/Saclay 232
 
  • R. Hollinger, W. Barth, L. A. Dahl, M. Galonska, L. Groening, P. S. Spaedtke
    GSI, Darmstadt
  • R. Gobin, P.-A. Leroy
    CEA, Gif-sur-Yvette
  • O. Meusel
    IAP, Frankfurt-am-Main
 
  For the injection of a high current proton beam into the future proton LINAC at GSI for FAIR the ion source and the low energy beam transport system have to deliver a 100 mA proton beam with an energy of 95 keV within an acceptance of 0.3 mm mrad (normalized, rms) at the entrance of the RFQ. Besides the ion source a 2-solenoid focusing system is foreseen as an injection scheme for the subsequent RFQ. The beam parameters of the SILHI ion source and the 2-solenoid LEBT setup generally meet these requirements. Therefore joint emittance measurements on various beam parameters have been performed at the end of the LEBT system. In the frame work of the design study for the future proton LINAC it was a unique possibility to investigate the injection of a high current proton beam into a low energy beam transport system under the influence of space charge. The measurements reveal that a proton current of 100 mA can be achieved at the end of the LEBT while the emittance (95 %, rms, normalized) is as high as 0.3 to 0.5 mm mrad.