A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Meidlinger, M. S.

Paper Title Page
THP047 Prototyping of a Single-Cell Half-Reentrant Superconducting Cavity 685
 
  • M. S. Meidlinger, J. Bierwagen, S. Bricker, C. Compton, T. L. Grimm, W. Hartung, M. J. Johnson, J. Popielarski, L. Saxton, R. C. York
    NSCL, East Lansing, Michigan
  • E. Zaplatin
    FZJ, Jülich
 
  As superconducting niobium cavities achieve higher gradients, it is anticipated they will reach a performance limit as the peak surface magnetic field approaches the critical magnetic field. "Low loss" and "reentrant" cavity designs are being studied at CEBAF, Cornell, DESY, and KEK, with the goal of reaching higher gradients via lower surface magnetic field, at the expense of higher surface electric field. At present, cavities must undergo chemical etching and high-pressure water rinsing to achieve good performance. It is not clear whether this can be done effectively and reliably for multi-cell low loss or reentrant cavities using traditional techniques. A "half-reentrant" cavity shape has been developed with RF parameters similar to the low loss and reentrant cavities, but with the advantage that the surface preparation can be done easily with existing methods. Two prototype single-cell half-reentrant cavities are being fabricated at 1.3 GHz; the non-reentrant wall angle is 8 degrees, the beam tube radius is 29 mm, and the cell-to-cell coupling is 1.47%. The half-reentrant cavity design and the results and status of the prototyping effort will be presented.  
THP066 Lorentz-Force Detuning Analysis for Low-Loss, Re-entrant and Half-Reentrant Superconducting RF Cavities 734
 
  • E. Zaplatin
    FZJ, Jülich
  • T. L. Grimm, W. Hartung, M. J. Johnson, M. S. Meidlinger, J. Popielarski, R. C. York
    NSCL, East Lansing, Michigan
 
  The RF design of a superconducting elliptical cavity requires a trade-off in the optimization of the cell shape between the region of high electric field and the region of high magnetic field. In practice, the cavity performance may be limited not by the RF characteristics, but by detuning due to the Lorentz force, bath pressure fluctuations, or microphonics; Lorentz force detuning is of concern primarily for pulsed accelerators such as the proposed International Linear Collider. Hence the structural properties must also be taken into account in the cavity design. Several new cavity shapes are being developed in which the surface magnetic field is decreased relative to the TeSLA cavity shape, with the goal of reaching a higher accelerating gradient. This study will compare the Lorentz force detuning characteristics of the TeSLA, "low-loss", "reentrant", and "half-reentrant" cavity middle cells, and explore possible methods for stiffening the structures.