A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Luo, Y.

Paper Title Page
TUP057 A Compact, Normal-conducting, Polarized Electron, L-band PWT Photoinjector for the ILC 376
 
  • D. Yu, Y. Luo, A. Smirnov
    DULY Research Inc., Rancho Palos Verdes, California
  • I. V. Bazarov
    Cornell University, Ithaca, New York
  • R. P. Fliller
    Fermilab, Batavia, Illinois
  • P. Piot
    Northern Illinois University, DeKalb, Illinois
 
  The International Linear Collider (ILC) needs a polarized electron beam with a low transverse emittance. High spin-polarization (>85%) is attainable with a GaAs photocathode illuminated by a circularly polarized laser. Low emittance is achievable with an rf photoinjector. DULY Research has been developing an rf photoinjector called the Plane Wave Transformer (PWT) which may be suitable as a polarized electron source for the ILC. A 1+2(1/2) cell, L-band PWT photoinjector with a coaxial rf coupler is proposed for testing the survivability of GaAs cathode. It is planned to produce a high-aspect-ratio beam using a round-to-flat-beam transformation. In addition to its large vacuum conductance, the modified PWT has a perforated stainless steel sieve as a cavity wall, making it easy to pump the structure to better than 10-11 Torr at the photocathode. An L-band PWT gun can achieve a low emittance (0.45 mm-mrad for a 0.8nC round beam) with a low operating peak field (<25MV/m). A low peak field is beneficial for the survivability of the GaAs photocathode because electron backstreaming is greatly mitigated.