A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ludwig, F.

Paper Title Page
THP001 Conceptual LLRF Design for the European X-FEL 559
 
  • S. Simrock, V. Ayvazyan, A. Brandt, M. Huening, W. Koprek, F. Ludwig, K. Rehlich, E. Vogel, H. C. Weddig
    DESY, Hamburg
  • M. K. Grecki, T. Jezynski
    TUL-DMCS, Lodz
  • W. J. Jalmuzna
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw
 
  The LLRF System for the superconducting cavities of the European X-FEL must support an amplitude and phase stability of the accelerating fields of up to 0.01% and 0.01 deg. respectively. The stability must be achieved in pulsed operation with one klystron driving 32 cavities. This goal can only be achieved with low noise downconverters for field detection, high gain feedback loops and sophisticated feedforward techniques. State-of-the art technology including analog multipliers for downconversion, fast ADCs (>100 MHz) with high resolution (up to 16 bit), and high performance data processing with FPGAs with low latency (few hundred ns) allow to meets these goals. The large number of input channels ( >100 including probe, forward and reflected signal of each of the 32 cavities) and output channels (>34 including piezo tuners for each cavity) combined with the tremendous processing power requires a distributed architecture using Gigalink interfaces for low latency data exchange.