A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Horan, D.

Paper Title Page
FR2003 New Materials and Designs for High-Power, Fast-Phase Shifters 829
 
  • R. L. Madrak, D. Sun, D. Wildman
    Fermilab, Batavia, Illinois
  • E. E. Cherbak, D. Horan
    ANL, Argonne, Illinois
 
  In the 100 MeV H- Linac to be constructed at Fermilab, the use of fast ferrite high power phase shifters will allow all accelerating RF cavities to be driven by a single 2.5 MW, 325 MHz klystron. This results in substantial cost savings. The tuners are coaxial with aluminum doped Yttrium Iron Garnet (YIG) ferrite. In combination with a branch line couplers, they will provide independent phase and amplitude control for each cavity. This is achieved by adjusting the solenoidal magnetic field applied to the ferrite. We report on our results in both low power (timing) and high power tests, for both 3'' and 1-5/8'' OD phase shifters. The low power measurements demonstrate that the rate of phase shift is well within the spec of 1 degree/us. The high power tests were performed at the Advanced Photon Source at Argonne National Lab. We measured phase shifts and the failure point (applied power) for tuners in various configurations. In addition, we performed phase and amplitude measurements for a setup consisting of a 1-5/8'' OD phase shifter along with a prototype branch line coupler.