Paper |
Title |
Page |
THP072 |
Fabrication and Low-Power Measurements of the J-PARC 50-mA RFQ Prototype
|
749 |
|
- Y. Kondo
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
- K. Hasegawa
JAEA, Ibaraki-ken
- A. Ueno
JAEA/LINAC, Ibaraki-ken
|
|
|
In the Japan Proton Accelerator Research Complex (J-PARC) project, the beam commissioning of the H- linac will be started with a 30mA peak current. A 30mA type RFQ, which is developed for the former Japan Hadorn Facility (JHF) project, is used for the day-1 operation. However, it is required to accomplish the peak current of 50mA as soon as possible. For this purpose, we have developed an RFQ for the 50mA peak current, which is a four vane type RFQ and resonant frequency of which is 324MHz, same as the 30mA RFQ. In the R&D of this RFQ, we have adopted laser welding to join oxygen free copper blocks to be a cavity structure. The heat load of the laser welding can be more localized than that of the brazing, and the copper is not annealed, therefore, we think, it is possible to obtain more mechanical accuracy. We have developed a longitudinally 1/3 prototype cavity of the J-PARC 50mA RFQ. In this cavity, the distortion of the vane tips is measured to be less than 30 micro-meters, and the field uniformity of within 1% is obtained in a low power measurement after tuning. In this paper, we discuss about the fabrication and the low power measurement of this prototype cavity.
|
|
THP063 |
First High-Power ACS Module for J-PARC Linac
|
725 |
|
- H. Ao, K. Hasegawa, K. Hirano, T. Morishita, A. Ueno
JAEA/LINAC, Ibaraki-ken
- M. Ikegami
KEK, Ibaraki
- V. V. Paramonov
RAS/INR, Moscow
- Y. Yamazaki
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
|
|
|
J-PARC Linac will be commissioned with energy of 181-MeV using 50-keV ion source, 3-MeV RFQ, 50-MeV DTL and 181-MeV SDTL (Separated DTL) on December 2006. It is planed to be upgraded by using 400-MeV ACS (Annular Coupled Structure), in a few years from the commissioning. The first high-power ACS module, which will be used as the first buncher between the SDTL and the ACS has been fabricated, and a few accelerating modules are also under fabrication until FY2006. Detail of cavity design and tuning procedure has been studied with RF simulation analysis and cold-model measurements. This paper describes RF measurement results, fabrication status, and related development items.
|
|