A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Clemente, G.

Paper Title Page
MOP046 Commissioning of the 7-MeV/u, 217-MHz Injector Linac for the Heavy Ion Cancer Therapy Facility at the University Clinics in Heidelberg 148
 
  • B. Schlitt, R. Baer, W. Barth, T. G. Fleck, M. Hoerr, G. Hutter, C. M. Kleffner, M. T. Maier, A. Peters, M. Schwickert, K. Tinschert, W. Vinzenz, H. Vormann, D. Wilms
    GSI, Darmstadt
  • R. Cee, E. Feldmeier, B. Naas, S. Scheloske, J. Suhm, S. Vollmer, T. Winkelmann
    HIT, Heidelberg
  • G. Clemente, U. Ratzinger, A. Schempp
    IAP, Frankfurt-am-Main
  • S. Minaev
    ITEP, Moscow
 
  A clinical synchrotron facility designed by GSI for cancer therapy using energetic proton and ion beams (C, He and O) is under construction at the university clinics in Heidelberg, Germany. In this contribution the current status of the injector linac is reported. The installation and commissioning of the linac is performed gradually in three steps for the ion sources and the LEBT, the 400 keV/u RFQ and the 7 MeV/u IH-type drift tube linac. Two powerful 14.5 GHz permanent magnet ECR ion sources from PANTECHNIK as well as the LEBT and the linac RF system have been installed in Heidelberg between November 2005 and March 2006. A test bench with versatile beam diagnostics elements has been designed and installed for the commissioning phase. In April 2006 the two ion sources produced the first ion beams on the site. Extensive RFQ tests using proton beams have been performed at test benches at the IAP and at GSI already during 2004-2006. The 1.4 MW 217 MHz amplifier for the IH tank has also been commissioned at a test setup at GSI in advance to the installation in Heidelberg. The RF tuning of the 20 MV IH-DTL cavity is performed by the IAP in close cooperation with GSI.  
MOP061 The 70-MeV Proton Linac for the Facility for Antiproton and Ion Research FAIR 186
 
  • L. Groening, W. Barth, L. A. Dahl, W. Vinzenz, S. Yaramyshev
    GSI, Darmstadt
  • G. Clemente, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt-am-Main
 
  A significant part of the experimental program at FAIR is dedicated to antiproton (pbar) physics requiring up to 7·1010 cooled pbars per hour. Taking into account the pbar production and cooling rate, this is equivalent to a primary proton beam of 2·1016 protons per hour to be provided by a 70 MeV proton linac preceding two synchrotrons. It has to deliver a pulsed proton beam of 70 mA of 36 μs duration at a repetition rate of 4 Hz. The normalized transverse emittances must not exceed 2.8 mm mrad and the total relative momentum spread must be less than 0.1%. The normal conducting DTL comprises 12 Crossed-bar H-cavities (CH) fed by six rf-power sources in total. The basic layout of the linac as well as the overall cost estimate has been completed including several reviews by external committees. A technical report has been completed in May 2006. This paper gives a general overview on the status of the project.  
TUP086 Linac Code Benchmarking for the UNILAC Experiment 460
 
  • F. Franchi, W. B. Bayer, G. Franchetti, L. Groening, I. Hofmann, A. Orzhekhovskaya, S. Yaramyshev, X. Yin
    GSI, Darmstadt
  • G. Bellodi, F. Gerigk, A. M. Lombardi, T. Mütze
    CERN, Geneva
  • G. Clemente, A. C. Sauer, R. Tiede
    IAP, Frankfurt-am-Main
  • R. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
 
  In the framework of the European network HIPPI (High Intensity Pulsed Proton Injectors) a linac code comparison and benchmarking program have been promoted. An intermediate goal is to compare different space charge solvers and lattice modelling implemented in each code in preparation of experimental validations from future measurements to be carried out at the UNILAC of GSI. In the last two years a series of different tests and comparisons among several codes (DYNAMION, HALODYN, IMPACT, LORASAR, PARMILA, PATRAN, PATH and TOUTATIS) have been undertaken. The quality of Poisson solvers has been evaluated and a number of code adjustments has been carried out to obtain the best agreement in terms of RMS moments. In this paper we report on the status of this program.  
TH1004 A 70-MeV Proton Linac for the FAIR Facility Based on CH - Cavities 526
 
  • U. Ratzinger, G. Clemente, C. Commenda, H. Liebermann, H. Podlech, R. Tiede
    IAP, Frankfurt-am-Main
  • W. Barth, L. Groening
    GSI, Darmstadt
 
  Future Accelerators for fundamental and for applied research will need a significant improvement in injector capabilities. This paper will describe the concept and the status of the 70 MeV, 70 mA proton injector for GSI - FAIR and compare the CH - linac design with traditional DTL concepts. Improvements in the space charge routine of the LORASR code as well as CH - prototype cavity development and cavity grouping with respect to commercial 3 MW rf power amplifiers is reported. Additionally, the potential of robust superconducting low and medium energy high current linac sections will be explained on the basis of experimental results from a first 19 cell s.c. 350 MHz CH - prototype cavity.