A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bechtold, A.

Paper Title Page
MOP052 First Performance Test of an Integrated RFQ-Drifttube-Combination 162
 
  • A. Bechtold, M. Otto, A. Schempp
    IAP, Frankfurt-am-Main
 
  In the frame of a collaboration with the GSI in Darmstadt an RFQ-Drifttube-Combination for the Heidelberg cancer therapy center HICAT has been designed, built and successfully beam tested at the IAP Frankfurt. The integration and combination of both an RFQ and a rebunching drifttube unit inside a common cavity forming one single resonant RF-structure has been realized for the first time with this machine. The results of the beam measurements and questions about the beam dynamics simulations have been investigated in detail with the code RFQSIM.  
THP089 Testbench of the HICAT RFQ at GSI 791
 
  • C. M. Kleffner, R. Baer, W. Barth, M. Galonska, F. Heymach, R. Hollinger, G. Hutter, W. Kaufmann, M. T. Maier, A. Reiter, B. Schlitt, M. Schwickert, P. S. Spaedtke, W. Vinzenz
    GSI, Darmstadt
  • A. Bechtold, A. Schempp
    IAP, Frankfurt-am-Main
  • R. Cee, E. Feldmeier, S. Vollmer
    HIT, Heidelberg
 
  In April 2006 the commissioning of the ion linac for the HICAT therapy facility in Heidelberg, Germany was started. In preparation of this commissioning process beam tests of the RFQ cavity with protons were carried out at GSI. The RFQ cavity for the HICAT facility was delivered to GSI in March 2005. The operation with an rf power up to 200 kW and a pulse width of 500 μsec could be accomplished successfully after a short time of rf-conditioning to assure the operation mode with carbon ions. A testbench for the RFQ cavity was constructed at GSI to allow for exact measurements of the output energy with the time of flight (ToF) method in addition to the beam tests at IAP Frankfurt. Due to the fact that the rebuncher is fully integrated into the RFQ rf-structure beam studies with different mechanical settings of the rebuncher had to be conducted. For each setting the effective voltage of the rebuncher could be estimated. The final mechanical setting was chosen with respect to required longitudinal matching to the IH structure behind of the RFQ.