Paper |
Title |
Page |
MOP058 |
Heavy-Ion-Beam Emittance Measurements at the GSI UNILAC
|
177 |
|
- W. B. Bayer, W. Barth, L. A. Dahl, L. Groening, S. Yaramyshev
GSI, Darmstadt
|
|
|
The GSI UNILAC, a linac for high current heavy ion beams, serves as an injector for the synchrotron SIS 18 and hence being a part of the future FAIR (Facility for Antiproton and Ion Research) project. The UNILAC post stripper section consists of an Alvarez accelerator with a final energy of 11.4 MeV/u. In order to meet the requirements of the FAIR project (15emA U28+, transversal normalised emittances of ex = 0.8 and ey = 2.5 mm mrad) a part of the UNILAC upgrade program is the increase of the beam brilliance. A detailed understanding of the correlation between space charge forces and focusing during acceleration of high intensity ion beams is necessary. A suited quantity to study is the beam brilliance dependency on the phase advances in the Alvarez section. Measurements are planned in 2006 and coincide with the beam dynamics work package of the European network for High Intensity Pulsed Proton Injector (HIPPI). Results of the measurements are presented as well as corresponding beam dynamics simulations.
|
|
TUP078 |
Status of the End-to-End Beam Dynamics Simulations for the GSI UNILAC
|
438 |
|
- W. Barth, W. B. Bayer, L. A. Dahl, L. Groening, S. Yaramyshev
GSI, Darmstadt
|
|
|
The heavy ion high current GSI linac UNILAC serves as an injector for the synchrotron SIS18. The UNILAC mainly consists of a High Current Injector (HSI), the stripper section at 1.4 MeV/u, and the Alvarez postaccelerator (11.4 MeV/u). During the last years the systematic experimental and numerical studies resulted in an increase of the U73+ beam intensity of up to a factor of seven. The needs of the FAIR project (Facility for Antiproton and Ion Research at Darmstadt) require further improvement of the beam brilliance coming from UNILAC up to a factor of five. End-to-end beam dynamics simulations with the DYNAMION code have already been started. The general goal is to establish a simulation tool which can calculate the impact of the planned upgrade measures on the performance of the whole UNILAC. The results of the HSI calculations including influence of the beam intensity on the beam parameters (current, emittance, Twiss-parameters) at the stripper section are presented. Recent calculations and measurements of the beam matching to the Alvarez section under space charge conditions are discussed in the paper.
|
|
TUP086 |
Linac Code Benchmarking for the UNILAC Experiment
|
460 |
|
- F. Franchi, W. B. Bayer, G. Franchetti, L. Groening, I. Hofmann, A. Orzhekhovskaya, S. Yaramyshev, X. Yin
GSI, Darmstadt
- G. Bellodi, F. Gerigk, A. M. Lombardi, T. Mütze
CERN, Geneva
- G. Clemente, A. C. Sauer, R. Tiede
IAP, Frankfurt-am-Main
- R. Duperrier, D. Uriot
CEA, Gif-sur-Yvette
|
|
|
In the framework of the European network HIPPI (High Intensity Pulsed Proton Injectors) a linac code comparison and benchmarking program have been promoted. An intermediate goal is to compare different space charge solvers and lattice modelling implemented in each code in preparation of experimental validations from future measurements to be carried out at the UNILAC of GSI. In the last two years a series of different tests and comparisons among several codes (DYNAMION, HALODYN, IMPACT, LORASAR, PARMILA, PATRAN, PATH and TOUTATIS) have been undertaken. The quality of Poisson solvers has been evaluated and a number of code adjustments has been carried out to obtain the best agreement in terms of RMS moments. In this paper we report on the status of this program.
|
|