Paper | Title | Page |
---|---|---|
TUP039 | Two-Charge-State Injector for a High Power Heavy-Ion Linac* | 336 |
|
||
A permanent magnet (PM) ECR ion source and following low energy beam transport (LEBT) system with the capability to deliver two-charge-state heavy-ion beams (2Q-LEBT) for high-power linacs is being prototyped at Argonne. The injector consists of the PM ECR ion source, transport line with beam diagnostics including emittance measurements and a multi-harmonic buncher. Recently the ECR ion source has been installed on a high voltage platform to increase the accelerating voltage up to the design value of 100 kV. The unique feature of the 2Q-LEBT layout is that the charge separation is performed off of the platform after acceleration of a multi-component ion beam. This layout allows us to analyze and recombine two-charge-state beams using an achromatic bending system. Improvements of the PM ECR performance and beam optics studies based on measurements of various heavy-ion beams will be discussed in this paper.
*This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. W-31-109-ENG-38 |
||
TUP072 | Beam Dynamics Studies of the 8-GeV Superconducting H- Linac | 420 |
|
||
A 8-GeV H-minus linac has been proposed to enhance the accelerator complex at Fermilab as a high-intensity neutrino source.* The linac is based on 430 independently phased superconducting cavities. The front-end of the linac (up to 420 MeV) operating at 325 MHz is based on RIA-type multi-spoke cavities. The rest of the linac (from 420 MeV to 8 GeV) uses ILC-type elliptical cavities. We have performed large scale end-to-end beam dynamics simulations of the driver linac using the code TRACK** including all sources of machine errors and detailed beam loss analysis. The results of these simulations will be presented and discussed.
* G. W. Foster and J. A. MacLachlan, Proceedings of LINAC-2002, p.826. |
||
TUP076 | First TRACK Simulations of the SNS Linac | 432 |
|
||
In an effort to benchmark the code TRACK* against the recent commissionnig data from the SNS linac, we started updating the code TRACK to support SNS-type elements like DTL's and CCL's. 2D electric field tables were computed using SUPERFISH and 3D magnetic fields from PMQ's were calculated using EMS-Studio. A special DTL routine was implemented and successfully tested. The first results of TRACK simulations using a realistic beam will be presented. A comparison with the code PARMILA will also be presented and discussed.
* "TRACK: The New Beam Dynamics code", V. N. Aseev et al, in Proceedings |
||
TUP079 | RIAPMTQ/IMPACT: Beam-Dynamics Simulation Tool for RIA | 441 |
|
||
We describe a multiple-charge-state simulation-code package for end-to-end computer simulations of the RIA heavy-ion driver linac, extending from the low-energy beam transport after the ECR source to the end of the linac. The work is being performed by a collaboration including LANL, LBNL, ANL, and MSU. The package consists of two codes, the code RIAPMTQ for the linac front end including the LEBT, RFQ, and MEBT, and the code IMPACT for the superconducting linac. This code package has been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The simulation tool will allow high-statistics runs on parallel supercomputing platforms, such as NERSC, as well as runs on desktop PC computers for low-statistics design work. It will address an important near-term need for the RIA project, allowing evaluations of candidate designs with respect to beam-dynamics performance including beam losses, which can be compared with predictions of other existing simulation codes. |