A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Anderson, D. E.

Paper Title Page
TUP002 High-Dynamic-Range Current Measurements in the Medium-Energy Beta Transport Line at the Spallation Neutron Source 244
 
  • D. A. Bartkoski, A. V. Aleksandrov, D. E. Anderson, M. T. Crofford, C. Deibele, S. Henderson, J. C. Patterson, C. Sibley, A. Webster
    ORNL, Oak Ridge, Tennessee
 
  It is desired to measure the effectiveness of the LEBT (low energy beta transport) chopper system. Since this chopper is required to chop the H- beam to a 1% level, it is required therefore to accurately measure the beam during the chop. A system is developed with a high dynamic range that can both accurately measure the beam to tune the chopper system as well as provide an input to the MPS (machine protection system) to stop the beam in the event of a chopper system failure. A system description, beam based calibration, and beam measurements are included.  
TH2003 Recent Developments in Pulsed High-Power Systems 541
 
  • D. E. Anderson
    ORNL, Oak Ridge, Tennessee
 
  Pulsed power systems are inherent in any high power accelerator system. Applications include, among others, modulators for powering high power klystrons, pulsed power systems to drive linear induction accelerating cells, kicker magnet drivers for storage rings, and a wide variety of beam deflection and pulsed focusing systems. As with many enabling technologies, component limitations and materials properties dominate the engineering tradeoffs that must be made during the system design. An overview of the state-of-the-art in major components of pulsed power systems will be presented. An examination of how those components are being integrated into linac systems will also be performed and an overview of these systems shall be given. The relatively recent shift toward solid-state power electronics solutions to pulsed power engineering problems will be emphasized. Finally, some future trends in the field will be examined.