KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

S. Michizono

for the KEK electron/positron Injector Linac and the Linac Commissioning Group

KEK

- KEKB injector linac
 - Brief history of the KEK electron linac
 - Continuous injection (CI) scheme
 - Maintenance and R&D at CI scheme
- Upgrade for SuperKEKB
 - Schematic ----- MOP31 S.Ohsawa et al.
 - Rf source ------ (rf window) THP58 S. Michizono et al.
 - SKIP ----- THP61 T.Sugimura et al.
 - Acceleration structure ----- THP29 T.Kamitani et al.
 - Dummy load
 - Summary

Operation Statistics

WE205

Linac Conference 2004 (Aug., 18, 2004) 3/32

100,000 hours operation since 1982

Operation status

- Total operation time reached 100,000 hours on March,2003.
- Machine failure is limited less than 5 %.

Continuous Injection (CI) Scheme

Beam on time after CI scheme

Careful beam tuning and short maintenance are required at CI.

WE205

Linac Conference 2004 (Aug., 18, 2004) 7/32

Dip test

- In order to find out the emission decrease of the klystrons, dip tests are applied to all the klystrons.
- Deeper dip -> operation near the shoulder.
- heater off time: 60 sec.
- Total measurements: within 10 min.

WE205

Linac Conference 2004 (Aug., 18, 2004) 8/32

Dip test

- Periodical measurements of the dip
 - -> find out the emission decrease with time

D ip tests at klystron gallery

Energy spread feedback

- Feedback systems
 - Energy feedback -> done
 - Position feedback -> done
 - Energy spread feedback -> tested with 8 electrodes BPM

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

S. Michizono

for the KEK electron/positron Injector Linac and the Linac Commissioning Group

KEK

- KEKB injector linac
 - Brief history of the KEK electron linac
 - Continuous injection (CI) scheme
 - Maintenance and R&D at CI scheme

Upgrade for SuperKEKB

- Schematic
- Rf source
- SKIP
- Acceleration structure
- Dummy load
- Summary

Linac Accelerator module (From S-band To C-band) MOP31 S.Ohsawa et al. Present S-band accelerator module New C-band accelerator module Wave guide Wave guide Wave guide S-band C-band C-band X SLED compresso compressor 40 MW C-band Kly- 2 μS 41 MW C-band Pulse Pulse 2 μs S-band 4 μs Pulse Kly-Kly-Modul-Modul-Kly-Modulator ator 🔟 stron ator _ stron stroh C-band accelerating sections S-band accelerating sections Accel. field gradient = 21 MV/mAccel. field gradient = 42 MV/m

WE205

Linac Conference 2004 (Aug., 18, 2004) 14/32

Overview of C-band rf system

♦ C-band rf system from #3 to #5 sector

Forty eight klystrons are installed (instead of 24 S-band klystrons)
 RFSystem Diagram C-band Plan(example)

48 C-band klystrons

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

S. Michizono

for the KEK electron/positron Injector Linac and the Linac Commissioning Group

KEK

- KEKB injector linac
 - Brief history of the KEK electron linac
 - Continuous injection (CI) scheme
 - Maintenance and R&D at CI scheme
- Upgrade for SuperKEKB
 - Schematic
 - Rf source (LLRF, Modulator, high-power klystron, rf window)
 - SKIP
 - Acceleration structure
 - Dummy load
 - Summary

Compact modulator

- By using invertor P.S., the modulator size can be 1/3 (4.7 m->1.8 m).
- Present PFN and Thyratron are reused at new modulator.

C-band klystron

TENTATIVE
 TOSHIBA PULSED KLYSTORN
 C-banyey 5/8) * 19/19/4/* Kely stron /IS COMMOPOLIEBILY
 E3746
 available. (developed by KEK for linear collider)

Toshiba E3746 is a C-band high power amplifier klystron designed for linear accelerators.

The E3746 delivers 50MW peak output power in 2.5 s pulse.

Output power is extracted through two WR187 standard waveguides in parallel. One port output is also possible with the specific power combiner.

The electron beam is focused by a series-coil electromagnet. The specific focusing electromagnet VT-68926 is available.

A Scandate dispenser cathode is employed,

ensuring high reliability and long tube life. Y. Ohkubo, H. Yonezawa, T. Shintake, H. Matsumoto and N. Akasaka, "HighTHE C-BAND 50MW KLYSTRON USING TRAVELING-WAVE OUTPUT STRUCTURE", Linac98, Chicago, p.932.

WE20

GENERAL CHARACTERISTICS

R&D of c-band rf window

- ♦ Requirements: 50 MW 2 µs (→ S-band 50 MW 4 µs)
- About Sixty S-band rf windows are successfully operated in KEKB linac. (MTBF > 40,000 h.)

Electric fileds should be less than rf windows used in S-band linac.

♦ Mix-mode window (TE11+TM11) enables to lower the edge electric field.

			1.35
	S-band	C-band	
Electric field at center of the ceramics [MV/m@50MW]	3.7	3.1	$ \begin{array}{c} \simeq 1.25 \\ \approx 1.2 \\ \simeq 1.15 \end{array} $
Electric field at edge of the ceramics [MV/m@50MW]	1.7	0.8	1.1 1.05 1
Maximum electric field on the ceramics [MV/m@50MW]	5.5	3.7	5.6 5.65 5.7 5.75 5.8 5.85
Band width [MHz] (VSWR<1.2)	600	210	tubizono et al.
			THP58 S. Michizon

WE205

1.4

Mix-mode rf window

WE205

Linac Conference 2004 (Aug., 18, 2004) 21/32

Resonant ring in the shield

- ♦ High power tests of the window was carried out by resonant ring.
- Rough tuning: spacer
- Fine tuning: operation frequency (5712->5710.2 MHz)

Results at resonant ring

- ♦ Maximum operation power of 300 MW (2 μ s), corresponding to 6-times larger than specification (50 MW).
- ♦ Only 3-times rf trips during 8 hours operation at 300 MW.

SKIP (SuperKEKB Injector Pulse compressor)

Mode:

TE015(SLED)-> TE038(LIPS)

- Similar cavity size to present S-band SLED.
- Higher Q value.
- Output 200 MW @43 MW input
- Power magnification:4.7

(lower than calculated value(5.5) due to slower switching time)

Q_0 =13200, coupling β = 6.6

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

S. Michizono

for the KEK electron/positron Injector Linac and the Linac Commissioning Group

KEK

- KEKB injector linac
 - Brief history of the KEK electron linac
 - Continuous injection (CI) scheme
 - Maintenance and R&D at CI scheme
- Upgrade for SuperKEKB
 - Schematic
 - Rf source (LLRF, Modulator, high-power klystron, rf window)
 - SKIP
 - Acceleration structure
 - Dummy load
 - Summary

C-band accel. section (First prototype)

54 regular cells 1m-long
iris diameter 2a: 12.44 ~ 10.41 mm
Based on present S-band acceleration structure

C-band accel. section installed in KEKB linac (2003 September)

THP29 T.Kamitani et al.

Beam acceleration study

Inside of the acceleration structure

Discharge every 10 min. even after conditioning.

It took place around input coupler (rf wave analysis).

Discharge traces observed input coupler and first disk.

THP29 T.Kamitani et al.

Discharge location analyzed by rf waves.

Second acceleration structure

- Thicker iris
- Wider coupler length @ 2nd acceleration structure
- High power test @ Aug.,2004.

THP29 T.Kamitani et al.

Dummy load

Newly designed 2kW Matsumoto-type dummy load

- 26 SiC cylinders
- SiC diameter 12 mm

High power test OK up to 2 kW (100 MW peak)

Summary

- S-band linac has been operated > 100,000 hours.
- The failure rate is about 5% and it contributes to the stable KEKB operation.
- C-band R & D is in progress.
- High power test of the prototype C-band accelerator module has been performed since October 2003.
- Most of the components are working well. (Remaining issues)
 Breakdown at input coupler -> improve @ 2nd acc. structure inverter P.S. troubles -> long term operation

(related presentations tomorrow)

- Rf window : THP58 S. Michizono et al.
- SKIP: THP61 T.Sugimura et al.
- Acc. structure THP29 T.Kamitani et al.