

PAL Linac Upgrade for a 1-3 Å XFEL

The XXII International LINAC Conference

Lübeck, Germany August 16-20, 2004

J. S. Oh and W. Namkung PAL/POSTECH, Korea

Y. Kim DESY, Hamburg, Germany

Pohang Light Source and 2.5-GeV Linac

POSCO, the World's Largest Steel Company

POSCO established the first research-intensive university in Korea, Pohang University of Science and Technology (POSTECH) in 1986, and Pohang Accelerator Laboratory (PAL) with a 3rd generation light source (PLS) in 1988.

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL PAL XFEI

POSTECH got many donations from **POSCO**.

For the university future, 133 M\$ in 2000 For the largest library in Korea, 42 M\$ in 2001 For a biological research center, 27 M\$ in 2002

In 1998 Asiaweek ranked POSTECH "No.1" among the specialized sciences and technology universities in Asia.

In 1994, 1996, 1997, 2002, and 2003, the Joong-Ang Ilbo, a Korean daily newspaper, ranked POSTECH the "No.1" university in Korea.

Pohang Accelerator Laboratory

188

160-m long 2.5-GeV S-band PLS Linac

O

PAL XFEL

□ In 1987, POSTECH, a newly established university, proposed to construct a synchrotron light source on its campus.

PLS is a 3rd generation synchrotron radiation source:
 2 GeV injector linac and storage ring with upgrade option to 2.5-GeV.

Construction Project: April 1988 ~ December 1994

- Funded by POSCO (60%) & Government (40%)

Operation: funded by Government (80%) & POSCO (20%)

Storage Ring

Tunnel

Parameters

0000

PAL XFEL

Beam Energy (GeV)	2.5
Emittance (nm-rad)	12.1
Beam Lifetime (Hours)	20
(@ 170mA)	
Number of Bunches	400
Beam Current (mA)	170

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL

PLS Beamline Status

- 9 -

PAL XFEL

 \mathbf{A}

V A

PLS 2.5 GeV Linac

Beam energy (GeV)	2.5
Frequency (MHz)	2,856
Energy spread (%)	0.26
Bunch length (ps)	13
Beam current (A)	33
Normalized emittance (um)	150
Number of klystrons	12
Klystron power (MW)	80
SLED Gain	1.6
No. of accelerating columns	44
Total length (m)	160

PAL XFEL

Demand on a Next Generation Light Source

Radiation wavelength:1 Å (0.1 nm)<= Undulator/users</th>Radiation pulse length:20 fs (FWHM)<= Beamline/users</th>

Beam energy: 3.0 GeV Bunch length: 100 fs (RMS)

Project period: 2005-2009 Project cost : ~ 40 M\$ <= Accelerator <= Accelerator

<= Administrator/users <= Administrator/users

Draft by Prof. W. Namkung February, 2003

A Future FEL Program at PAL

Pohang Accelerator Laboratory

Public Hearing February, 2004

PAL XFEL

Femto-second FIR

- Energy: 80 MeV
- Radiation: $1 \sim 20 \ \mu m$

> SASE FEL

- Energy: 3.0 GeV
- XFEL: 0.1 ~ 0.3 nm
- VUV FEL: 1 ~ 5 nm

On July 16, 2004

XFFI

Korean President visited PAL.
He gave a strong promise to
support PAL XFEL project.
Design budget of 0.4 M\$ in 2005
We are under discussion about
total construction budget with
government.

LUX at LBNL (1.2-60 nm) LCLS at SLAC (1.5-15 Å) LEUTL at APS (51-530 nm) X-ray FEL at MIT Bates (3-1000 Å) DUV-FEL at BNL (266/400 nm) 4GLS at Daresbury (124 Å) TESLA XFEL at DESY (0.86-64 Å) SASE-FEL at BESSY (12-600 Å) FERMI at ELETTRA (12-15 Å) SPARX in INFN Rome (15-135 Å) PAL XFEL at PAL (1-50 Å) SCSS at SPring-8 (36 Å)

PAL XFEI

Toward XFEL ...

For the Microbunching in Undulator

Electron Beam Parameters

• Slice normalized rms emittance:

$$\varepsilon_{ns} < \gamma \frac{\lambda}{4\pi}$$

• Slice rms relative energy spread:

$$\sigma_{\delta s} < \rho \approx \frac{1}{4} \left[\frac{1}{2\pi^2} \frac{I_{pk}}{I_A} \frac{\lambda_u^2}{\beta \varepsilon_n} \left(\frac{K}{\gamma} \right)^2 \right]^{1/3}$$

• Total undulator length:

$$L_{u} > L_{sat} \approx L_{G} \ln \left(\frac{P_{sat}}{\rho E e \Delta \omega}\right) \approx 20 L_{G}$$

where $L_{G} \approx \frac{\lambda_{u}}{4\pi \sqrt{3}\rho}$

$$\lambda_{\min} \propto \frac{\varepsilon_n^{5/4}}{L_u^{3/2} I_{pk}^{3/4}} \left[1 + 6 \left(\frac{\sigma_{\delta}}{\rho} \right)^2 \right]^{1/2}$$

Low emittance & high peak current !!!

PAL XFEL

For 3 Å PAL XFEL Project

Electron beam energy	≥	3.0 GeV
rms bunch length	≤	100 fs = 30 μm
Normalized slice emittance	\leq	1.5 μm
Slice rms energy spread	\leq	0.02% = 600 keV
Peak current	≥	4 kA

3 Å SASE FEL Energy spread: 0.02%, Bunch length (rms): 100fs

Undulator Optimization

Bunch charge: 1 nC Emittance: 1.5 mm-mrad

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL PAL XFEL

In-Vacuum Undulator for PAL XFEL

V A

In-vacuum Undulator

• We will use in-vacuum mini gap undulator developed by SPring-8 and BNL.

PAL XFEL

- 1st in-vacuum undulator at KEK in 1992 by Kitamura
- 19 in-vacuum undulators at SPring-8
- The longest undulator is 35 m long undulator at SPring-8.

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL

Undulator saturation length $\approx 20 L_G$ 3D Gain length $L_G = (1+\eta) L_{G,1D}$

$$L_{G,1D} \approx \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

~

- 21 -

PAL XFEL @ 3 GeV

V 🔼

λ_{x} (Å)	3.0
ε _n (mm)	1.5
τ (fs)	100
λ_{u} (mm)	12.5
gap (mm)	3.0
K	1.14
ρ	4.3e-4
β(m)	15
L _{undtor} (m)	58.5
PB (x10 ³²)	1.4

PAL XFEL

PAL 0.1 nm XFEL: 3rd harmonic amplification

3 Å SASE FEL @ 3 GeV Energy spread: 0.02%, Bunch length (rms): 100fs, Bunch charge: 1 nC Emittance: 1.5 mm-mrad Beta: 15 m

XFEL

Linac Upgrade

Upgrade of Beam Parameters

Parameter	PLS Linac	XFEL Linac
Beam energy	2.5 GeV	3.0 GeV
Normalized emittance	150 µm-rad	1.5 µm-rad
Bunch length (FWHM)	13 ps	0. 23 ps
Energy spread (RMS)	0.26%	0.02%
Bunch charge	0.43 nC*	1.0 nC
Peak current	33 A*	4 kA

* 2-A gun current and 62% transmission

20 MV/m 0°

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL

Twiss parameters in the existing linac can be further optimized !

Twiss Parameters of a New Injector

Lattice optimization to minimize this term

PAL XFEL

BC2 layout is same and almost same total chicane length ~ 12.2 m

BC Design Parameters

BC1 BC2 Parameter 700 MeV 442 MeV Beam energy Relative energy spread 1.84% 1.31% Uncorrelated energy spread 9.2e-6 4.3e-5 Bending angle 3.50 deg 1.45 deg Momentum compaction R56 38.9 mm 6.70 mm Total chicane length 12.2 m 12.2 m 0.3 m 0.3 m Dipole length 5.0 m 5.0 m Drift length DL 820 µm 114 µm Initial rms bunch length 114 µm 26 µm Final rms bunch length **Compression factor** 7.2 4.38 Initial projected emittance 0.90 µm 1.01 µm Final projected emittance 1.01 µm 1.12 μm

S2E Simulation and Results

Simulated Particles = 200,000

ASTRA Simulation of Photo-injector

At cathode

Pil-378, 800kinGini 08.18 18:59

PAL XFEL

emission time ps

 $\sigma_{\delta} = 0.033\%$

 $\sigma_z = 26 \ \mu m$

Projected Parameters along Linac

 $\sigma_x = 68 \ \mu m, \sigma_v = 62 \ \mu m$

 ε_{nx} = 1.1 µm, ε_{ny} = 1.0 µm

PAL XFFI

RMS beam size

Normalize emittance

Slice Parameters at Linac End

Horizontal emittance

Vertical emittance

dgamma

End of Linac with 200000 particles and 60 slices

Peak current

End of Linac with 200000 particles and 60 slices

RMS energy spread

LINAC2004, Lübeck, Germany, August 16-20, 2004 (WE204) PAL Linac Upgrade for a 1-3 Å XFEL

FEL Saturation at Undulator

Summary

- 1. By adding an S-band RF photo-injector, a 700 MeV injector linac, and two bunch compressors, PLS linac will be converted to an XFEL driving linac.
- 2. Optimized parameters of PAL XFEL are very promising and good enough to generate 3.0 Å SASE source.
- **3.** The construction is planed to start in 2006.
- 4. Commissioning for the first SASE source is scheduled in 2009.

□ Against Projected Parameter Dilution due to CSR and Chromatic Effect

• Long drift space ΔL to reduce bending angle for a required R56

Lattice Design Concepts

- Small bending angle at a large energy spread
- Large compression factor at BC1 and small compression factor at BC2
- Using strong focusing lattice around BC to reduce CSR induced emittance growth
- Small quadrupole length (shortest = 0.05 m) around BC to reduce the chromatic effects
- Smaller maximum beta-function at BC1 entrance ~ 60 m
- After reducing energy spread at BC2, larger maximum beta-function at BC2 entrance

□ Against Slice Parameter Dilution due to the Microbunching Instability

- Normal 4-bend chicane instead of S-type chicane is used.
- Keep large uncorrelated energy spread at BC2 by putting the BC2 at low energy region
- No need any laser beam heater or Superconducting wiggler !!!

□ Against the Tight Jitter Tolerance

- Two BC stage is used.
- RF gun will be driven by its own Klystron.
- Each S-band accelerating column before BC2 will be driven by each own Klystron
- X-band correction cavity will be possibly driven by two X-band Klystron

