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• SRF features
• State-of the-art beta=1 cavities 
• Projects and new challenges
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Thank You…

• … to the colleagues from the TESLA collaboration 

• ... to the colleagues in the field of  superconducting 
RF cavities for the material provided esp. P. Kneisel, 
J. Sekutowicz, G. Hoffstätter, M Kelly, H. Padamsee.
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Superconducting Cavities
• SC cavities offer 

– a surface resistance which is six orders of 
magnitude lower than normal conductors (NC)

– high efficiency, even when cooling is included
• large currents can be accelerated
• high duty cycle up to continuous wave (cw) operation

– low frequency, large aperture
– high accelerating gradients

• Theoretical limit for the TESLA shape is between 45-50 
MV/m

– energy recovery
– attractive for a wide range of projects....
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Accelerator Projects Featuring SRF Cavities

• Disclaimer: Focus of this talk is mostly on electron machines with beta =1 
– for beta <1  see J. Delayen TH301

• LINACs
– TESLA, European XFEL, TTF, ELBE, BESSY-FEL, MIT Bates, FERMILAB 8 GeV, SNS

• Recirculating LINACS
– S-DALINAC, CEBAF, LUX, Arc-en-Ciel, Neutrino Factory/Muon Collider

• ERLs
– JLAB FEL, JAERI, Cornell FEL, PERL (BNL), 4GLS, KEK-ERL, RHIC-II

• Storage rings
– HEP

• KEK-B, CESR, HERA, Tristan, LEP
– Synchrotron Light

• SOLEIL, CHESS, Canadian Light Source, Taiwan Light Source, DIAMOND

No guarantee for completeness...



08.03.2005Lutz Lilje   DESY 

New Applications for SRF Cavities
• high energy physics and synchrotron radiation physics 

(chemistry, biology...) have taken profit of this technology 
already since a long time

• technology is well advanced and available
– the small surface resistance of the superconducting necessitates avoidance of NC 

contaminations larger than a few µm
– detailed material specification and quality control are done
– tight specification for fabrication e.g. welds have been implemented
– clean room technology is a must

• new projects are aiming at
– high gradient (e.g. TESLA)

• further improvement of the surface preparation 
– increasing electron currents (ERLs)

• Higher-Order-Mode (HOM) damping
– high duty cycle (CW FELs)



Light Source

H. Padamsee, 
PAC2001
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Example: Standard SC Technology

• Cornell 500 MHz system
– developed by Cornell University
– commercially available
– used in:

• Canadian light source
• NSRRC (Taiwan light source)
• DIAMOND (UK)

– see EPAC 04: MOPLT041, MOPLT040
• Overview on magnetic peak field over a 

wide frequency range
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Magnetic Peak Surface Fields Today and 
1980
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Recent Developments and Challenges

• Surface preparation improvement
• CW modules
• Superstructures
• New elliptical cavity shapes
• CW ERL
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Surface Preparation: 
Electropolishing

• Electropolishing (EP) of niobium surfaces is a key 
technology  to achieve the highest electrical and magnetic 
surface fields 

• KEK/ Nomura Plating pioneered application of EP to 
elliptical niobium cavities since TRISTAN using a 
Siemens’ recipe

• EP has also been successfully applied to
– Low-Beta Quarter wave structures
– TESLA nine-cells
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Electropolishing Offers Improved 
Surface Quality

200 µm 200 µm

Conventional
Etch (BCP)

EP
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Electropolished 1,3 GHz Elliptical Niobium Cavities
K. Saito et al. KEK   1998/1999

Test temperature: 1.6 KOne-cell cavities
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Ken Shepherd, 
SRF 2003, 
Lübeck
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Electropolishing Setup at DESY
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AC70: EP at DESY
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Comparison of EP to Standard Etch
(Results from the KEK-DESY Collaboration)
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After EP Average 
35.6 +/- 2.3 MV/m

After Standard etch Average 
28.9 +/- 1.1 MV/m

• EP offers systematically higher gradient than standard etch (single cell
results from mode analysis of multi-cells)
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Results

– High power tests give Cavity-Coupler-wise the full information about the 
system’s behaviour e.g. it corresponds to 1/8th of an accelerator module 

– Longterm test:
• No breakdown in 1100 hours at 35 MV/m (neither the Cavity nor the Coupler)
• No degradation was observed when breakdowns were forced (thermal quenches 

and coupler breakdowns)



08.03.2005Lutz Lilje   DESY 

High Power Test Results
• One cavity without post-purification achieved a gradient of more than 35 MV/m with a Q0 of 

1010. This a about a factor of 2 above the TESLA specification.
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Cavity Test Inside a Module (ctd.)

• One of the electropolished cavities (AC72) was installed into an accelerating module for 
the VUV-FEL

• Very low cryogenic losses as in high power tests 
• Standard X-ray radiation measurement indicates no radiation up to 35 MV/m
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From Pulsed to Continuous-Wave (CW)
• TESLA is a pulsed machine

– large heat losses due to high gradient
– gradient is the major research issue

• for CW operation
– high quality factor at intermediate gradients is crucial
– ultimate dream is Q0>>1010 at 15 MV/m

• often this means the same thing:
– avoid field emission
– good niobium quality i.e. eddy-current scanned material
– detailed welding specification



08.03.2005Lutz Lilje   DESY 

A.-M. Valente
et al., EPAC’04

• stable CW operation at 15 MV/m achieved at JLAB-FEL
– etched cavities
– no postpurification using titanium furnace treatment

• most of the operation at lower gradient by user request so far, but not limited by the 
cavities

CW 
Modules
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Recent Developments and Challenges

• Surface preparation improvement
• CW modules
• Superstructures
• New elliptical cavity shapes
• CW ERL
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Superstructures

• more economical (e.g. less high power 
couplers)

• higher fill factor of the accelerator
• improved HOM damping
• demonstrated that

– energy refilling does work even with weakly 
coupled sub-units

J. Sekutowicz et al., 
Phys.Rev. ST-AB, 
Vol. 7, 012002 (2004)

J. Sekutowicz, 
SRF2003, Lübeck
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Superstructure Layout
• Cell-to-cell coupling: ~2%
• Structure-to-structure: ~0.04%
• Compare standard nine-cell with superstructure:



08.03.2005Lutz Lilje   DESY 

2x7-cell Superstructure Prototypes at TTF
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Energy Transfer

• Measured: 
– ∆E/E (rms) ≤ 2·10-4

• TESLA-Specification: 
– ∆E/E (rms) ≤ 5 ·10-4
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HOMs
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Beam Dynamics limit  Qext ≤ 105

• damping of  dipoles with (R/Q) ≥ 1 Ω/cm2 which are relevant 
for the TESLA beam was by factor 5÷100 better then spec.
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Recent Developments and Challenges

• Surface preparation improvement
• CW modules
• Superstructures
• New elliptical cavity shapes
• CW ERL



08.03.2005Lutz Lilje   DESY 

New Elliptical 
Cavity Shapes
• Example: CEBAF upgrade

– high-gradient operation (HG): 
• lower Esurf
• reduce field emission

– low-loss (LL)
• maximize shunt impedance 

and geometric factor
• with a given cryo power 

maximise achievable gradient

Parameter OC HG LL 

Øequator                             [mm]  187.0 180.5 174.0 

Øiris                                  [mm] 70.0 61.4 53.0 
 kcc

*                                    [%] 3.29 1.72 1.49 
Epeak/Eacc                              [-] 2.56 1.89 2.17 
Bpeak/Eacc            [mT/(MV/m) 4.56 4.26 3.74 
R/Q                                    [Ω] 96.5 111.9 128.8 
G                                        [Ω] 273.8 265.5 280.3 
R/Q·G                            [Ω·Ω] 26422 29709 36103 

 

Øequator Øiris

J. Sekutowicz,  P. Kneisel, et.al.
This conference.
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New Elliptical 
Cavity Shapes 

(ctd.)
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• multipacting-free
• multi-cells show Eacc~20 MV/m 
• one-cell of the low loss variety gives an Esurf of 87 MV/m 
• HOMs

– damping of niobium prototypes confirms calculations and copper model 
measurements, 

– improved feedthroughs with better thermal design under fabrication 
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Recent Developments and Challenges

• Surface preparation improvement
• CW modules
• Superstructures
• New elliptical cavity shapes
• CW ERL
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CW ERLs
• Promises:

– high efficiency
– lower RF power requirements

• nearly independent of 
accelerated current

• need to compensate wall losses, 
therefore superconductivity

– linac-like beam quality
– beam power at the dump 

reduced
• Examples

– existing: JLAB, JAERI 
• ~10 mA

– proposed: Cornell ERL Prototype 
• ~100mA

• Challenges
– higher order mode damping
– high cw power couplers

  Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

30m

JLAB
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2-cell cavity

Coupler Block
6-3/4” CF Flange

4-1/2” CF Flange

Cavity

6” CF Flange
2-cell cavity

Coupler Block
6-3/4” CF Flange

4-1/2” CF Flange

Cavity

6” CF Flange

Example: Cornell ERL 
Prototype Cavities

• Injector
– two-cells (‘HOM-free’)
– Ferrite broadband absorbers at 80 K
– 130 kW CW coupler

• Linac
– seven-cells
– LLRF stability

• Phase 0.06 degrees
• Amplitude: 3*104

– Qext=2.6*107 (microphonics)
– 140 W losses per cavity from beam-

excited monopole modes
– opposite HOM couplers to reduce 

transverse kicks
– enlarged beam tube
– 6 HOM loop couplers:

• reduce power per coupler
• damp quadrupole modes reliable.

– ferrite broadband absorbers at 80 K
7-cell s.c. cavity,

TESLA shaped center cells
small 78 mm
beam tube

large 106 mm
beam tube

2 K
80 K 80 K

7-cell s.c. cavity,
TESLA shaped center cells

small 78 mm
beam tube

large 106 mm
beam tube

2 K
80 K 80 K
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Summary
– SC cavities are a standard tool becoming more and more 

interesting for several applications
• CW linacs (e.g. FELs, ERLs)
• high gradient applications (e.g. TESLA)

– this is due to:
• surface preparation provides high gradients near the theoretical limit

– a big variety cavities achieve Bsurf=100mT easily
– with EP up to 150 mT in multi-cells
– even higher Q0 at intermediate gradients is desirable for cw

applications
• new cavity design options

– cell shape
– superstructures

• improved HOM damping concepts allow to increase currents 


