Development of the UNILAC towards a Megawatt Beam Injector

W. Barth, GSI - Darmstadt

- 1. GSI Accelerator Facility Injector for FAIR
- 2. Heavy Ion Linear Accelerator UNILAC
- 3. SIS 18 Intensity Upgrade Program and Requirements for FAIR
- 4. Unilac Upgrade Measures (since 2002)
 - HSI Upgrade (RFQ, Super Lens, IH)
 - Stripper Sections
 - Alvarez Matching
- 5. Status of the Unilac High Current Performance & further UNILAC Upgrade
- 6. A Proton Linac for SIS-Injection
- 7. Additional GSI-LINAC-Projects
- 8. Summary

Future Internationale Accelerator Facility at GSI: FAIR (Facility for Antiproton and Ion Research)

Future Internationale Accelerator Facility at GSI: FAIR (Facility for Antiproton and Ion Research)

The GSI UNIversal Linear ACcelerator

Multi Particle Simulations (LEBT - SIS-Injection)

Development of the UNILAC towards a Megawatt Beam Injector, W. Barth

Space Charge Forces (for high current uranium beams) ...

SIS 18 – Intensity Upgrade Program and requirements for FAIR

(a twentyfold mutiturn injection is supposed)

	HSI entrance	HSI exit	Alvarez entrance	SIS 18 injection	SIS 18 injection (FAIR)
ION SPECIES	$^{238}\mathrm{U}^{4+}$	$^{238}\mathrm{U}^{4+}$	$^{238}\text{U}^{28+}$	$^{238}\mathrm{U}^{28+}$	$^{238}\mathrm{U}^{28+}$
El. Current [mA]	16.5	15	12.5	8.4*	15
Part. per 100µs pulse	$2.6 \cdot 10^{12}$	$2.3 \cdot 10^{12}$	$2.8 \cdot 10^{11}$	1.9 ·10 ¹¹ *	3.5 ·10 ¹¹
Energy [MeV/u]	0.0022	1.4	1.4	11.4	11.4
$\Delta W/W$	-	$\pm 4.10^{-3}$	$\pm 2.10^{-3}$	$\pm 2.10^{-3}$	$\pm 2.10^{-3}$
ε _{n,x} [mm mrad]	0.3	0.5	0.75	0.8	0.8-1.1
ε _{n,y} [mm mrad]	0.3	0.5	0.75	2.5	-

* in SIS-acceptance, as expected from multiparticle calculation

Unilac-Measures (since 2002)

- MEVVA-Ion Source: Further development, improvement of operation lifetime, beam stability, ...
- RFQ-Upgrade: Exchange of RFQ-rods, modified IRM
- Super Lens-Upgrade: Improved rf-performance
- IH 1: New Triplet-Lens
- Investigation of the longitudinal HSI-beam quality
- Increased stripper gas density
- Matching to the ALVAREZ-DTL under space charge conditions (S. Yaramishev, MOP08)
- Reduction of the number of Single Gap Resonators
- Alignment
- High Current Beam Diagnostics (A. Peters, MO202)
- Machine Investigations: Frontend, Alvarez-matching, transfer line-emittance measurements (*S. Richter, MOP07*)

MUCIS- & MEVVA- Ion Sources

MUCIS (<u>M</u>ulti <u>C</u>usp <u>Ion S</u>ource) (Emission Current Density ≤150 mA/cm²)

MEVVA (<u>ME</u>tal <u>V</u>acuum <u>V</u>apor <u>A</u>rc Ion Source) (Emission Current Density ≤150 mA/cm²)

		HSI-INJECTION	DESIGN		
MUCIS	H_3^+	1.0 mA	0.8 mA		
	\mathbf{D}_{3}^{+}	2.0 mA	1.6 mA		
	${}^{12}C^{+}$	7.0 mA	3.2 mA		
	${}^{14}N^{+}$	4.0 mA	3.8 mA		
	$^{18}O^{+}$	5.0 mA	4.8 mA		
	20 Ne ⁺	5.5 mA	5.4 mA		
	CO^+	6.0 mA	8.1 mA		
	⁴⁰ Ar ¹⁺	19.0 mA	10.8 mA		
	$^{86}{ m Kr}^{2+}$	8.0 mA	11.6 mA		
	129 Xe ²⁺	0.75 mA	17.4 mA		
MEVVA	$^{12}C^{+}$	5.5 mA	3.2 mA		
	$^{48}{ m Ti}^{1+}$	3.0 mA	12.9 mA		
	$^{48}\text{Ti}^{2+}$	20.0 mA	6.5 mA		
	$^{48}{ m Ti}^{3+}$	20.0 mA	4.3 mA		
	${}^{52}Cr^{1+}$	6.0 mA	14.0 mA		
	⁵⁸ Ni ¹⁺	10.0 mA	15.6 mA		
	$92 Mo^{2+}$	6.0 mA	12.4 mA		
	$2\overline{38}U^{4+}$	16.0 mA	16.0 mA		

RFQ-Upgrade: New RFQ-Rods

New RFQ-rods

After

copper-

plating

RFQ-Upgrade: Modified Input Radial Matcher

Test Bench Measurements in the HSI-LEBT (8 emA, U⁴⁺)

Quartet

HSI-RFQ-Commissioning (7/2004)

IH 2: Longitudinal Mismatch

 $U_{IH2} = 8.15 V$ $U_{IH2} = 8.25 V$ (

U_{IH2} = 8.45 V

Increased Stripper Gas Density

Alvarez-Matching

Emittance Measurement before the DTL, 3.5 emA U²⁸⁺

Betafunction (before Matching)

Alvarez DTL-Transmission: 92 % (before) 99 %. (after)

Betafunction (afterMatching)

(S. Yaramishev, MOP08)

Status of the UNILAC High Current Performance

1,0

1 mA 🔲 6 mA

Status of the UNILAC Uranium-Performance

beam current [emA]

Development of the UNILAC towards a Megawatt Beam Injector, W. Barth

Status of the UNILAC Uranium-Performance II

	Measured	Design	required for FAIR	
²³⁸ U ⁴⁺				
Max. Beam Intensity I, (2.2 keV/u)	16 cmA	16 emA	20 emA	
l _{max} @beam power, (1.4 MeV/u)	6.5 emA @545 kW	15 emA@1250 kW	18 emA@1500 kW	
Transv. Emittance (LEBT) (90%, total)	140 π·mm·mrad	120 π·mm·mrad	120 π·mm·mrad	
Macropulse Length	150 μs	150 μs	150 μs	
Reproducibility/Transversal Emittance	±4.5%	-	-	
Beam loading, 6emA (IH2)	300 kW	590 kW (15 emA)	710 kW (15 emA)	
U ²⁸⁺				
Max. Beam Current, (1.4 MeV/u)	5.0 emA	12.6 emA	15.0 emA	
Max. Beam Intensity, 11.4 MeV/u, I _{max} @beam power Transfer to the SIS18	4.5 emA@440 kW	12.6 emA@1221 kW	15.0 emA@1453 kW	
lons/100µs	1.0.10''	2.8·10 ¹¹	3.3·10 ¹¹	
U ⁷³⁺				
Max. Beam Intensity, 11.4 MeV/u, Ionen/100μs	2.0 emA 1.7·10 ¹⁰	4.6 emA 3.9 10 ¹⁰	3.5 emA 3.0 10 ¹⁰	
Transv. Emittance (11.4 MeV/u) (90%, tot.)	10.0 <i>π</i> -mm-mrad	5.0 π·mm·mrad	7.0 π mm·mrad	

Further Upgrade Measures (2005-2009)

- High Current Test Bench for the investigation of the Ion Source (Post acceleration)
- Dedicated U⁴⁺-High Current-Frontend (Compact-LEBT@RFQ)
- Further investigation of the high current matching to Alvarez-DTL
- Increased zero current phase advance in the Alvarez-DTL
- High Current Beam Diagnostics in the whole UNILAC
- Compact Charge Separator for the separation of U⁷³⁺ under sc-conditions
- Further development of simulation tools
- Extended High Current UNILAC machine experiments

Main Upgrade Measures (2005-2009)

Dedicated U⁴⁺ Frontend-System

High Current Beam Diagnostics

 $\Delta \Phi_{o} = 39^{\circ}$

ΔΦ_o = 51°

-15 -10

Compact Charge Separator

Example of UNILAC 3-Beam Operation

Upgrade of the UNILAC for Super Heavy Element Production

 50% duty factor (presently: 25 %, A/ξ ≤ 8)

intensity-gain factor x2

New rfq-tank:

- gain of the duty factor
- higher injection energy
- increased acceptance

LEBT – Laminated magents:

- redundance for ion sources
- preparation for future pulse to pulse operation

Additional 28 GHz-ion-source:

- intensity gain of factor two
- higher charge states for increased duty factor

Proton Linac

Development of the UNILAC towards a Megawatt Beam Injector, W. Barth

Decelerator for the Heavy Ion TRAP

Stetion	[]					SP-III
	5.0	4.8 ·10 ⁻⁴	0.093	0.9		$1\cdot 10^6$ measured
ESR	4.0		0.1	1.0	100%	$(6 \cdot 10^5)$ estimated
	3.0	2·10 ⁻⁴	0.06	0.7		$2 \cdot 10^5$ measured
Entrance Prebuncher	4.0	4.8 ·10 ⁻⁴	0.2	2.2	100 %	$6\cdot 10^5$
Entrance IH	4.0	±1.3·10 ⁻²	0.2	2.2	28 %	1.7 · 10 ⁵
Exit IH / Entr. RFQ	0.5	$\pm 2.10^{-2}$	0.24	7.3	28 %	$1.7 \cdot 10^5$
Exit RFQ	0.006	$\pm 7.10^{-2}$	0.37	100	26 %	$\textbf{1.5}\cdot\textbf{10}^{5}$
LEBT, entrance of trap	0.006	±7·10 ⁻²	0.37	100	21 %	1.2 · 10 ⁵

F

Summary

- An extended upgrade program in the UNILAC in combination with machine investigations resulted in a seven times higher uranium beam intensity offered for the injection into the synchrotron SIS 18. 2.0 emA (73+), 4.5 emA (28+) \rightarrow **0.45 MW beam powe**r
- Mainly the improved ion source performance, an upgrade of the HSI-structures, the increased stripper gas density, the optimization of the Alvarez-matching, and the use of various newly developed beam diagnostics devices were responsible for the successful development program.
- FAIR-requirements: The UNILAC-upgrade will be continued with the investigation of a new front end for U⁴⁺, stronger power supplies for the Alvarez quads, a charge state separator system and beam diagnostics devices, sufficient for the operation with megawatt heavy ion beams.
- Primary proton beam intensities will be increased by a new proton linac (to be commissioned in 2007).
- The decelerator for the HITRAP should be ready for operation in 2008.
- Advanced SHE experimental program: Improvement of the average target luminosity for medium heavy ions in the MeV/u-range (linac development program 2005-2009).

