LINAC2004 Invited

SURVEY OF ADVANCED ACCELERATOR CONCEPTS

C.JOSHI University of California Los Angeles, U.S.A.

ADVANCED ACCELERATION WORKSHOP Stony Brook, June 2004

Electromagnetic Wave Schemes : IFEL

Laser Plasma Schemes: LWFA

Beam Driven Schemes : PWFA

Exotic Schemes

: Ion Acceleration

Laser Guiding in Plasmas

Sources

Inverse Free Electron Laser (IFEL)

- Use periodic magnet array (wiggler/undulator) to cause electron trajectory to oscillate while traveling through array
- Net energy exchange between electrons and laser beam possible if resonance condition is satisfied

$$\gamma^{2} = \frac{\lambda_{w}}{2\lambda_{L}} \left(1 + \frac{K^{2}}{2}\right)$$

where λ_{L} = laser wavelength λ_{w} = wiggler wavelength γ = Lorentz factor $K = eB_{o}\lambda_{w}/2\pi mc$ B_{o} = peak magnetic field

• Higher energy exchange possible using tapered wiggler/undulator

Schematic Layout of STELLA Experiment

Examples of Experimental Results

Laser Wakefield Acceleration

- Laser Wake Field Accelerator(LWFA)
 A single short-pulse of photons
- Plasma Beat Wave Accelerator(PBWA)
 Two-frequencies, i.e., a train of pulses
- Self Modulated Laser Wake Field Accelerator(SMLWFA)
 Raman forward scattering instability

evolves to

Imperial College Laser acceleration experiments using London the VULCAN PetaWatt

Recent Breakthrough -- Mono-energetic Beams! 3 Labs!

Courtesy J. Faure, LOA

Divergence FWHM = 6 mrad

Imperial College London

Mono-energetic spectra can be observed at higher power (△E/E = 6 %)

Courtesy: K. Krushelnick, RAL

Plasma channel: structure for guiding and acceleration

∧Пе

- Hydro-dynamically formed plasma channel
 - On-axis axicon (C.G. Durfee and H. Milchberg, PRL 71 (1993))
 - Ignitor-Heater (P. Volfbeyn et al., Phys. Plasmas 6 (1999))
 - Discharge assisted (E. Gaul et al., Appl. Phys. Lett. 77 (2000))
 - Cluster jets (Kim et al., PRL 90 (2003))
- Discharge ablated capillary discharges (Y. Ehrlich et al., PRL 77 (1996))
- Z-pinch discharge (T. Hosokai et al., Opt. Lett. 25 (2000))
- Hydrogen filled capillary discharge (D. Spence and S. M. Hooker, JOSA B (2000))
- Glass capillaries (B. Cross et al., IEEE Trans. PS 28(2000), Y. Kitagawa PRL (2004))

Ultra-Intense Laser is illuminated into a glass capillary, which accelerates plasma electrons to 100 MeV-- Y.Kitagawa-Osaka

Slowing of the laser pulse leads to dephasing of the trapped particles to give a narrower energy spread in 3D PIC simulations

Laser-acceleration of *ions* from solid targets

if target is heated \rightarrow efficient acceleration of heavy ions

[M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).]

Recent Highlight: Record beam quality $\varepsilon_n < .004 \text{ mm-mrad}!$

Beam-driven Wakefield Accelerators

• Space charge of beam displaces plasma electrons

- Plasma ions exert restoring force =>
 - •Net Focusing force on beam (F/r= $2\pi ne^2/m$)

No diffraction

- •Space charge oscillations (short beam)
- Wake Phase Velocity = Beam Velocity (like wake No dephasing

• Wake amplitude $\propto N_b/\sigma_z^2$

OF SOUTHERN

CALIFORNIA

PIC Simulations of Beam and Plasma Wakes

Wedge shape w/ beam load beam length = 6 c/ $\omega_{p,}$ n_b/n_p= 8.4, N_{drive} = 3x10¹⁰, N_{trailing} = 0.5x10¹⁰ Stanford Linear

Accelerator

Center

E-162/E-164/E-164X PWA Experiments

Collaboration:

C. Barnes, F.-J. Decker, P. Emma, M. J. Hogan, R. Iverson, P. Krejcik, C. O'Connell, P. Raimondi, R.H. Siemann, D. Walz Stanford Linear Accelerator Center

B. Blue, C. E. Clayton, C. Huang, C. Joshi, D. Johnson, K. A. Marsh, W. B. Mori, W. Lu *University of California, Los Angeles*

> T. Katsouleas, S. Lee, P. Muggli, E. Oz University of Southern California

PWFA Experiments @ SLAC Share Common Apparatus

X-Ray Emission from Betatron Motion in a Plasma Wiggler

Acceleration Of Electrons & Positrons: E-162

 Some electrons gained 280 MeV (200 MeV/m)
 Now going for 2 GeV at a rate of 10,000 MeV/m this month at SLAC

• Loss ≈ 50 MeV • Gain ≈ 75 MeV

B. Blue *et al.*, Phys. Rev. Lett. 2003 R. Bingham, Nature, News and Views 2003

PWA Experiments at SLAC

04/9-11/2003

E164X Breaks GeV Barrier

L≈10 cm, $n_e \approx 2.55 \times 10^{17}$ cm⁻³ N_b ≈ 1.8×10¹⁰

Energy gain exceeds ≈ 4 GeV in 10 cm

A Plasma Afterburner (Energy Doubler) of Relevance to Future Colliders Could be Demonstrated at SLAC

S. Lee et al., Phys. Rev. STAB, 2001

Afterburner simulation

Minimal hosing!

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture. QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

1) Matched wedge shape drive beam with trailing bi-Gaussian beam.

2) Background plasma density.

New FAST 3-D Quasi-static PIC Model (QuickPIC)

50 Gev energy gain in 3 meters !

QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

> QuickTime™ and a MPEG-4 Video decompressor are needed to see this picture.

Accelerating field 24GeV/m at the load

We are on the path to the energy frontier...

CONCLUSIONS

Significant Progress in the Past Two Years.

Quasi-mono energetic Beams of Electrons from Laser Plasma Accelerators @100 MeV, 200pC charge

GeV Energy Barrier Shattered at SLAC (E164X)

Extremely Low Emittance Proton Beams from Laser Plasmas

IFEL Achieves 50 MeV/m Gradients @ UCLA Staged Acceleration with High Efficiency shown at ATF(BNL)

Possibility of 10 GeV Energy Gains in 1m Begins to Look Real

USC UNIVERSITY OF SOUTHERN CALIFORNIA

Ali Z. Ghalam, T. Katsouleas, A. Z. Ghalam, S. Lee (USC), W. B. Mori, C. Huang, V. Decyk, C. Ren(UCLA) Giovanni Rumolo, Frank Zimmermann, Francesco Rugierro (CERN)

Plasma Accelerators

2. Monoenergetic electron beams

Incoming Energy Spread 1.4 GeV

4. GeV Milestone

Special thanks to Chan Joshi, Patric Muggli, Mark Hogan, Wim Leemans, Warren Mori, Ricardo Fonseca, Luis de Silva, Frank Tsung, Eric Esarey, Julien Fuchs, Jerome Faure, Viktor Malka, Karl Krushelnick, Chengkun Huang, Suzhi Deng, Bob Bingham for materials generously provided

...And to all my E-164 collaborators

Extra and backup slides

Simulations of Electon Cloud Instability in the LHC ring

Ζ

QuickPIC simulations are performed On USC's Linux Cluster on 32 Processors for 28 days!

UNIVERSITY OF SOUTHERN CALIFORNIA

Hoizontal Spot Size(mm) (rms)	0.884		
Vertical Spot Size(mm)(rms)	0.884		
Burch Length(m)(rms)	0.115		
Horizontal Box Size(mm)	18		
Vertical BoxSize(mm)	18		
Burch Population	1.1×10 ¹¹		
AverageHorizontal Beta Function(m)	66		
Average Vertical Beta Function(m)	77.5		
Momentum Spread	4.68×10 ⁴		
Beam Momentum(Ge√C)	479.6		
Circumference(km)	26659		
Horizontal Betatron Tune	64.28		
Vertical Betatron Tune	59.31		
SynchrotronTune	0.0059		
Horizontal and Vertical Chromaticity	2,2		
Electron Cloud Donity (cm ⁻³)	6×10 ⁵		

Table 1.LHCparameters used in the simulations

QuickTime[™] and a Video decompressor are needed to see this picture.

Y

Astrophysical Jets -- the ultimate beam-plasma interaction laboratory

Radio Jets from Galaxy 3C296

X-rays from Crat Nebula Pulsar

Refraction of an Electron Beam: Interplay Between Simulation & Experiment

1 to 1 modeling of meter-scale experiment in 3-D! (128 processors at NERSC, 5000 cpu hours) *P. Muggli et al., Nature 411, 2001*

Beam Energy	Ν	σ	σ	σ	Grids Size	ε _N	Simulation Size
(Gev)		(μm)	(μm)	(μm)		(π μ-rad)	$(c/\omega_p=366\mu m)$
28.5	2*10 ¹⁰	650	25	25	384*120*120	58*5	6*2*2

Beam propagation in a long plasma: r-z beam density contours

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

- Focusing of the beam well described by a simple model $(n_b > n_e)$: Plasma = Ideal Thick Lens
- Emittance of 30 GeV beam preserved thru 1.4 m of plasma

Electron Beam Refraction At Plasma–Gas Boundary

P. Muggli et al., Nature 411, 2001

High power beams tend to blow holes

• 30 GeV e-beam penetrates several mm's of copper...

Courtesy T. Raubenheimer, M. Ross

But we have seen...

 30 GeV beam incident on 1mm of dilute gas (one million times less dense than air) refracts and even...bounces off (total internal reflection)!

Short-pulse lasers and particle beams have similar peak power

□ High-intensity lasers

- **100 Terawatt to Petawatt (1kJ/ps) --> 35J/35fs)**
- □ 10²¹-10²² W/cm²

□ High-intensity electron beams (SLC)

4x10¹⁰ electrons at <u>50 GeV</u> in 2ps - 200fs:

- **100** Terawatt to 1 Petawatt
- □ 10²¹-10²² W/cm²

□ Correspond to enormous forces and energy densities:

- **TeV/cm E-fields (quiver energies >10 GeV)**
- **GigaGauss B-fields**

□ TeraBar radiation pressure and energy densities (5 billion tons/in²!)

Critical Issues

- Beam Loading create/phase 2nd bunch
- Transverse Beam Dynamics
 hosing
 lenses
 pointing to sub-nm
- Positron Acceleration
- Plasma Source Development
- Modeling

Concepts For Plasma Based Accelerators*

Plasma Wake Field Accelerator(PWFA)
 A high energy electron bunch

Laser Wake Field Accelerator(LWFA, SMLWFA, PBWA)
 A single short-pulse of photons

Drive beam
 Trailing beam

Linear Plasma Wakefield Theory

$$(\mathscr{O}_{t}^{2} + \omega_{p}^{2})\frac{n_{1}}{n_{o}} = -\omega_{p}^{2}(\frac{n_{b}}{n_{o}} + k_{p}^{2}\nabla^{2}\sqrt{1 + a_{o}^{2}})$$

Large wake for a beam density $\mathbf{n_b} \sim \mathbf{n_o}$ or laser amplitude $\mathbf{a_o} = \mathbf{eE_o}/\mathbf{m\omega_oc} \sim \mathbf{1}$ for τ_{pulse} of order $\omega_p^{-1} \sim 100$ fs $(10^{16}/n_o)^{1/2}$ and speed $\sim \mathbf{c} = \omega_p/\mathbf{k_p}$

$$\nabla \bullet E = -4\pi e n_1 \Rightarrow eE = \frac{n_1}{n_o} \sqrt{\frac{n_o}{10^{16} cm^{-3}}} 10 \, GeV/m \cos \omega_p (t - z/c)$$

But interesting wakes are very nonlinear => PIC simulations

Nonlinear wakes are *similar* with laser or particle beam drivers: 3-D PIC OSIRIS Simulation (self-ionized gas)

Laser Wake

Electron beam Wake

NRL Laser Injection Laser Wakefield Accelerator

A. Ting, D. Kaganovich, D. Gordon, R. Hubbard and P. Sprangle

• Synchronized, collinear, two jet, two-beam (2TW/10TW) laser configuration

First demonstration of staged optical injection/acceleration LWFA experiment

- Injection electrons <0.5 MeV (high-density LIPA)
- Accelerated electrons >10 MeV
- Injection/Acceleration occurs only for time delays of <3 psec
- Delay of electrons from peak forward Raman signal shows:
 - Injection electrons not from background plasma
 - Slippage of injection electrons from laser pulse

Particle Accelerators compact to country size Rich Physics and Applications

Large

- Verified Standard Model of Elem particles
- W, Z bosons
- Quarks, gluons and quark-gluon plasmas
- Asymmetry of matter and anti-matter
- In pursuit of the Higgs Boson (cause of mass)

<u>Compact</u>

- Medicine
 - Cancer therapy, imaging
- Industry and Gov't
 - Killing anthrax
 - lithography
- Light Sources (synchrotrons)
 - Bio imaging
 - Condensed matter science

EXPERIMENTAL BEAM-IMAGE AGREES WELL WIT SIMULATION OF SUBPICOSECOND BEAM

Particle Accelerators Requirements for High Energy Physics

- High Energy
- High Luminosity (event rate)
 - L=fN²/4 $\pi\sigma_x\sigma_y$
- High Beam Quality
 - Energy spread $\delta\gamma/\gamma \sim .1 10\%$
 - Low emittance: $\varepsilon_n \sim \gamma \sigma_y \theta_y < 1$ mm-mrad
- Low Cost (one-tenth of \$6B/TeV)
 - Gradients > 100 MeV/m
 - Efficiency > few %

3 Limits to Energy gain $\cdot \text{Difference} = e E_{dif} = \pi e E_{dif} = \pi$

order mm!

(but overcome w/ channels or relativistic self-focusing)

Raw Acceleration Data from 200 shots (3 minutes)

Very consistent acceleration for similar incoming beam parameters

Production of a Monoenergetic Beam

- 1. Excitation of wake (e.g., self-modulation of laser)
- 2. Onset of self-trapping (e.g., wavebreaking)
- 3. Termination of trapping (e.g., beam loading)
- 4. Acceleration

If > or < dephasing length: large energy spread

If ~ dephasing length: monoenergetic

Optimal choice of the plasma density: the smallest possible density For conditions 1 -4 to be fulfilled.

 n_e = 3 \times 10^{16} cm^{\text{-3}}, L = 15 cm, N = 1.8 \times 10^{10}

- Energy loss of ~ 2.5 GeV seen.
- Tail motion consistent with energy gain.

Further confirmation and scaling planned in Runs III-IV (May '04)

Plasma Accelerator Progress and the "Accelerator Moore's Law"

Particle Accelerators Why Plasmas?

Conventional Accelerators

- Limited by peak power and breakdown
- 20-100 MeV/m
- Large Hadron Collider (LHC) --27km, 2010
- Plans for "Next" Linear Collider (NLC) - 50km ?

<u>Plasma</u>

- No breakdown limit
- 10-100 GeV/m

Recent Laser Acceleration Results:

V. Malka et al., LOA France, Science 2002

•30TW, 35 fs laser

•200 MeV energy gain in a 1mm gas jet (> 200 GeV/m)

•Highly collimated beam:

 $\epsilon_n \sim 1 \text{ mm-mrad}$ Fritzler et al., PRL92(2004)

Intense Relativistic Beams in Plasmas: PW/µ² New Plasma Physics

- Wake generation/ particle acceleration
- Focusing
- Hosing
- "Collective Refraction"
- Radiation generation
- Ionization effects

- Compact accelerators
- Plasma lens/astro jets
- E-cloud instability/LHC
- Fast kickers
- Tunable light sources
- Beam prop. physics/X-ray lasers

FOCUSING OF e⁻/e⁺

• OTR images ≈ 1 m from plasma exit ($\varepsilon_x \neq \varepsilon_y$)

 Ideal Plasma Lens in Blow-Out Regime

 Plasma Lens with Aberrations

• e⁺: halo formation from non uniform focusing M.J. Hogan *et al.*, PRL, 2002; Also J. Ng et al., 2001 (**F/r~GG/cm**)

• Overall focusing at low plasma densities M.J. Hogan *et al.*, PRL, 2002

Simulation Data Vs. Experiment

 $n_e = 2.3 \times 10^{-14} \text{ cm}^{-3}$

Experiment Results *Use low n_e events as "plasma off"

Recent results on e-beam : Energy distribution improvements

N.B. : color tables are different

J. Faure, LOA

