ENGINEERING AND BUILDING RF STRUCTURES

THE WORKS

DALE SCHRAGE LOS ALAMOS NATIONAL LABORATORY

D. Schrage, 8/17/04

THE FIELD HAS EVOLVED

- THINGS HAVE CHANGED DURING THE PAST 20+ YEARS
- THE PERFORMANCE REQUIREMENTS HAVE INCREASED
- WE HAVE BETTER TOOLS TO MEET THOSE NEEDS
 - ENGINEERING & PHYSICS CODES– HIGHER PERFORMANCE COMPUTERS

INCREASED **PERFORMANCE REQUIRED**

- THE PERFORMANCE REQUIREMENTS **OF ACCELERATOR CAVITIES HAVE CONTINUED TO INCREASE**
 - HIGHER BEAM CURRENT
 - HIGHER DUTY FACTORS
 - HIGHER GRADIENTS
 - HIGHER BEAM & CAVITY POWER – LOWER EMITTANCE

INCREASED **PROGRAMMATIC PRESSURE**

- THERE IS INCREASED PRESSURE **ON COST AND SCHEDULE**
- WE HAVE TO SIMULTANEOUSLY **DELIVER:**
 - GOOD
 - FAST
 - CHEAP
- LITTLE TIME OR TREASURE FOR **EXPERIMENTATION**

THE BEAR RFQ

THE SSC RFQ

THE LEDA RFQ

7

LANSCE-I

LEDA RFQ SECTION

NC CAVITY PERFORMANCE REQUIREMENTS HAVE INCREASED PRODUCING HIGHER THERMAL LOADS

	SSC 1992		LEDA 1995	
	DESIGN	OPERATED	DESIGN	OPERATED
DUTY FACTOR	0.05%	3%	CW	CW
ENERGY MeV	2.5	2.5	6.7	6.7
PEAK CURRENT mAmp	27	27	100	100
AVERAGE CURRENT mAmp	0.014	0.81	100	100
BEAM POWER kWatts	0.034	2	670	670
CAVITY POWER kWatts/meter	0.06	3.7	150	182
AVERAGE HEAT FLUX watt/cm ²	0.01	0.63	13	16
PEAK HEAT FLUX watt/cm ²	0.05	3.2	65	79

SC CAVITY PERFORMANCE REQUIREMENTS HAVE INCREASED PRODUCING HIGHER STRUCTURAL LOADS

- CRYOMODULE GRADIENTS OF $\beta = 1$ PULSED ELLIPTICAL CAVITIES NOW APPROACH 40 Mvolts/Meter
 - LORENTZ FORCE DETUNING $\propto E^2$
- LOADED Q OF LOW-β CAVITIES NOW EXCEEDS 10⁷
 - MICROPHONICS IS NOW A GREATER CONSIDERATION

WE HAVE POWERFUL NEW TOOLS

- 2-D LINKED RF CAVITY-THERMAL-STRUCTURAL CODES
- 3-D LINKED RF-CAVITY-THERMAL-FLUID DYNAMICS-STRUCTURAL CODES

ABILITY TO CALCULATE

- FREQUENCY SHIFTS DUE TO:
 - RF THERMAL LOADS
 - VACUUM LOADS
 - LORENTZ FORCE
- MECHANICAL RESONANT FREQUENCIES
- TUNING SENSITIVITIES
- RF FIELD DISTRIBUTIONS DUE TO CAVITY DEFORMATIONS

- THE FREQUENCY SHIFTS ARE CALCULATED BY CONVOLVING THE SLATER PERTURBATION FREQUENCY SHIFTS AT EACH SUPERFISH NODE WITH THE NODAL DISPLACEMENTS FROM THE STRUCTURAL ANALYSIS
- RUNNING SUPERFISH WITH DISPLACED GEOMETRY WOULD YIELD LOWER ACCURACY
- Q/A CHECK IS TO CALCULATE THE FREQUENCY SHIFT DUE TO A FREE THERMAL EXPANSION OF THE CAVITY

2D & AXISYMMETRIC RF CAVITY CODE (SUPERFISH) LINKED TO COMMERCIAL FINITE ELEMENT STRUCTURAL/THERMAL CODE (COSMOS/M)

- OUTPUT FILES OF THESE CODES ARE IN ASCI FORMAT AND CAN BE READ BY FORTRAN AND C PROGRAMS
- PROGRAMS CAN BE RUN FROM COMMAND LINE SO HIGH LEVEL CODE CAN BE WRITTEN FOR SUCH THINGS AS ITERATIVE SOLUTION FOR COOLANT TEMPERATURE

FOR ANALYSIS OF NORMAL CONDUCTING CAVITIES:

- 1. RUN RF ANALYSIS
- 2. RUN CAVITY THERMAL ANALYSIS WITH RF THERMAL LOADS
- 3. RUN STRUCTURAL ANALYSIS WITH THERMAL LOADS
- 4. CALCULATE FREQUENCY SHIFT

2-D CODES USED TO DETERMINE COOLANT PASSAGE SIZES & LOCATIONS

D. Schrage, 8/17/04

2-D CODES FOR CAVITIES FOR ANALYSIS OF SUPERCONDUCTING CAVITIES:

- 1. RUN RF ANALYSIS
- 2. RUN STRUCTURAL ANALYSIS SEPARATELY WITH LORENTZ FORCE PRESSURE, VACUUM LOAD, & END DISPLACEMENT OR FORCE
- 3. CALCULATE LORENTZ FORCE DETUNING, BCP FREQUENCY SHIFT, VACUUM FREQUENCY SHIFT, AND TUNING SENSITIVITY

2-D CODES FOR SUPER-CONDUCTING CAVITIES

- INFN/MILANO HAS DEVELOPED A LINKED 2-D CODE FOR SUPERFISH AND ANSYS ANALYSIS OF SINGLE- & MULTI-CELL ELLIPTICAL CAVITIES
- CODE IS INTERFACED TO A DATABASE THAT FACILITATES PARAMETRIC STUDIES TO OPTIMIZE CAVITY GEOMETRY
- USED TO DESIGN THE SNS SC CAVITIES

COMMERCIAL 3D RF CAVITY CODE LINKED TO FINITE ELEMENT STRUCTURAL, THERMAL, & CFD MODULES

THERE IS A CODE GROUP AVAILABLE FROM SRAC (MICAV & COSMOS/M) AND ONE FROM ANSYS (ANSYS)

BOTH CODE GROUPS CAN ALSO BE USED FOR 2-D AND AXI-SYMMETRIC CAVITIES

- A SINGLE SOLID MODEL, CREATED USING A CAD SYSTEM (UNIGRAPHICS, PRO-ENGINEER, etc), IS USED FOR BOTH THE PHYSICS DESIGN AND ENGINEERING ANALYSIS OF THE CAVITY
- THIS IS A SIGNIFICANT ADVANTAGE IN MODELING SPEED AND QUALITY ASSURANCE
- THE MODEL CAN LATER BE USED TO GENERATE THE MANUFACTURING DRAWINGS

BENCHMARKING OF CODES

ANALYSIS OF THE ANL $\beta = 0.34$, 2-GAP CAVITY DEMONSTRATED THAT THE 3-DIMENSIONAL CAVITY CODES HAVE VERY GOOD AGREEMENT

	MAFIA	STAR	MICAV	MWS	ANSYS	MEAS.
Freq MHz	340.01	340.50	340.33	340.56	340.77	339.70
Q _o	4621	4694	4799	4554	4463	4815
TTF	0.905	0.906	0.900	0.905	0.886	N/A

3-D CODES PROCEDURE

- **GENERATE MODEL**
- MESH CAVITY VOLUME & STRUCTURAL VOLUME
 - CAVITY & STRUCTURAL NODES MERGE AT CAVITY WALL
- **RUN RF ANALYSIS**
- RUN THERMAL ANALYSIS (IF NORMAL CONDUCTING
- RUN STRUCTURAL ANALYSIS
- EXPORT CAVITY WALL DISPLACEMENTS TO CAVITY MESH
- RUN RF ANALYSIS FOR FREQUENCY SHIFT

COMPARISON OF MAFIA, MICAV, AND ACTUAL BEADPULL OF ANL $\beta = 0.34$ SPOKE CAVITY

D. Schrage, 8/17/04

24

LINKED CFD/THERMAL ANALYSIS

APT/LEDA CCDTL CAVITY COURTESY OF AES

PROBLEMS WITH 3-D CODES

- SMALL MARKET
 - CODE VENDORS MAY BE NON-RESPONSIVE TO BUGS
- OCCASIONAL DIFFICULTIES IN EXCHANGE TO/FROM CAD SYSTEMS

CW RFQ ENGINEERING MODEL

LANSGE-1

D. Schrage, 8/17/04

RFQ COLD MODEL

LANSCE

$\beta = 0.175$ SPOKE CAVITY

LANSGE-1

CONCLUSIONS

- LINKED RF CAVITY/THERMAL/CFD, STRUCTURAL CODES ARE AVAILABLE FROM COMMERCIAL SOURCES
- THEY REDUCE THE COST OF DEVELOPMENT OF NEW HIGH-POWER & HIGH GRADIENT ACCELERATORS

ACKNOWLEDGEMENTS

- Frank Krawczyk of LANL/LANSCE-1
- Richard LaFave formerly LANL
- Tom Schultheiss of Advanced Energy Systems
- Rick Wood of LANL/LANSCE-1
- Lloyd Young of TechSource