The Science of RIA
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Why build a high-power, heavy-ion LINAC?

. Introduction

- The intellectual challenges addressed by RIA (Nuclel,
Chemical History of the Universe, Fundamental Symmetries)

. Production of rare isotopes — options and considerations

- What does SRF technology and the RIA concept make
possible?

- Summary
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We don’t know nuclei that well — Binding Energies
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An Example of a Nuclear Halo

llLi 208Pb

Halo Nucleus Normal Nucleus

Two effects : QM penetration (halo) and a difference in

proton and neutron Fermi levels (skins)
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NRC Report Connectlng Quarks to the Cosmos

EIeven Science Questions for the New Century (2003) — National
Academy Study, M. Turner Chair

— What is dark matter?

— What is the nature of the dark energy?

— How did the Universe begin?

— Did Einstein have the last word on gravity?

— What are the masses of the neutrinos and how have they shaped the evolution of

the universe?

— How do cosmic accelerators work and what are they accelerating?

— Are protons unstable?

— Are there new states of matter at exceedingly high density and temperature?

— Are there additional space-time dimensions?

v"How were the heavy elements from iron to uranium made?
— Is a new theory of matter and light needed at the highest energies?

NEW: US Interagency Task Force stated that Underground Lab,
RIA, RHIC Il are needed to meet these goals. http://www.ostp.gov/
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Rapld Neutron Capture Process (r process)

How were the heavy elements from iron to uranium made?
Two possibilities (there are others):

Supernova shock

Merging Neutron Stars

Woosley ... Thieleman ...

EEEE
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Importance of Nuclear Phy5|cs I the r- process

—— Shell gap reduced 3 A v pOst-
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Dobaczewski, Nazarewicz, Kratz, ...

Question: Is this difference due to shell quenching for
neutron-rich nuclei, or a problem with astrophysical model?
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Possibilities to study r-process nuclel

. Needed Data for r-process nuclei:
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Summary of the suentlflc Justlflcatlon for JWST

e What Is the shape of the
Universe?

* How do galaxies evolve?

e How do stars and planetary
systems form and interact?

e How did the Universe build up it
present elemental/chemical
composition?

James Webb Space Telescope
NASA/EESC/CSA « What is dark matter?

http://ngst.gsfc.nasa.gov/science/ScienceGoals.htm
LINAC 2004
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The Active Universe- Gamma Ray Astronomy .

JINA

T M.Wiescher

(25Al Half life: 700,0000 years)

1.157 MeV y-radiation
(Half life: 60 years)

44Ti in Supernova Cas-A Location ﬁ‘ WL
L1




Observation of 2°Al Demonstrates Nucleosynthesis

N. Prantzos, Astonomy & Astro 420 (2004)

The observation indicates 2 solar masses of 26Al produced
per My (1.5x10% atoms/s). How?

e Type Il Supernovae
a 90Fe/?8Al ratio is a problem
o measured by RHESSI to be 0.16 (predicted >0.4)
a °9Fe(n,y) is critical but >°Fe is radioactive

* Novae

» \Wolf-Rayet Stars

Needed: Better observations and better nucleosynthesis
calculations
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Rare Isotopes and Fundamental Symmetries
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Rare-isotope facilities provide a credible path to necessary
Improvements on parity non-conservation in atoms.
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Radioactive Beam Production Mechanisms

* Projectile Fragmentation/Fission
Fragment Separator
beam

Beams used without stopping «_

_ —
Post Acceleration [Jf—8 Gas cell catcher/ion source
beam

o Target Spallation and fragmentation ._‘

Target/lon Source

- —] —>- Post Acceleration target

* Neutron induced fission (2-step target)
Neutrons

DEINAGH - > —ll Post Acceleaion
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Optimum Mechanism for each Isotope

Optimum production
method for low-energy beams

1 Standard ISOL technique

I Two-step fission

>

1 In-flight fission + gas cell

B Fragmentation + gas cell

>Neutron number

Most facilities use only one production method.
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Requirements

 Production cross sections for the interesting nuclei
at the limits of stability are low (fb), thus as high
as possible primary beam intensities are needed.
Uranium Luminosity = 1 pb-ist

e There iIs no overall optimum production
mechanism — we would like have access to all.

e Secondary beams from 60 kV to 1 GeV/u are
needed to extract the science.

Solution:

SRF technology — Primary, high intensity, linear
accelerator and efficient secondary accelerator

S LINAC 2004
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Rare Isotope Accelerator - RIA

j Eels oL — Pl

 Efficient acceleration of elements up to uranium at 2.4x10%%/s and E >
400 MeV/nucleon. Beam power of 400 kW.

* Possibility to optimize the production method for a given nuclide.

» Secondary beams at energies from 60 kV to 400 MeV/u .

Schematic of _ Separation
In-flight Separated Beams
the RIA (E > 50 MeV/u) | y
Production v

Concept Targets
Driver Linac 400 MeV/u U, 900 MeV p

lon Sources/ G
Pre-acceleration . as N
Secondary Linac Stopplngi
No ) TI
SUEUE Sl Astrophysics Acceleration:
Reactions E < 1 MeV/u Traps, Laser Isotope
E <15 MeV/u Spec.. etc. Recovery

@ Reaccelerated Beams LINAC 2004
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RIA SRF Cavities — All Tested by 2003
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3=0.49 Cryomodule Prototype (THP70)

Helium Dewar

Helium Supply

Support Link

Outer Magnetic Shield
Thermal Intercept Shield

Alignment Viewport

Titanium Alignment
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Beta = 0.47
Superconducting Cavity
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Tests of Nuclear Models — Binding Energies

NSCL
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Changes in nuclear shell structure for n-rich nuclel

J. Dobaczewski and W.
Nazarewicz
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Weakening of Shell Structure in Exotic Nuclel

R i T P - e it i R e - Ty i e T =T i ] T e— 3 e
e . e L e il e et s e B I e meee

PROTON NUMBER
68 62 56 50 44 38

N=80 1 J. Dobaczewski and
N=82 —— 1 W. Nazarewicz

N=84—— ]
N=86—-—

N
-
|

ol
N
[] I 1 1 [ [ 1 1 [ [

(=Y
(@)

|
>

1 Phil. Trans. R. Soc. Lond.
1 A 356, 2007 (1998)

S,, (MeV)

neutron drip line

| proton drip lin

Present l
HRIBF

S = @@

|
1.2 15 1.8 |21 24
N /Z RIA .01/s limit

LINAC 2004



Extreme Halos Reachable at RIA
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Nuclear Science needs to study n/p degree of freedom

. Approach
Nuclei

Symmetries/properties

~ QCD protons-neutrons-mesons

Quarks-Gluons Effective Theory
>

Very hard

P
N
Necessary to know what effective RIA-Fair-ISAC
Interactions operate in nuclel
> N
LINAC 2004
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Nuclear Microphysics of the Universe
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What Is Unique about the RIA linac?
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Possibility to optimize the production method
Multiple charge state acceleration
— 400kW beam power

— highest efficiency for rare stable isotope acceleration, e.g.,
48Ca, 124Sn (this can yield gains of 100 to 1000)

Intense Uranium Beams at 400 MeV/u and 400 kW

Liquid Li production target + fragment separator + gas catcher
system

— Ability to handle 400 kW beams

— Precision reaccelerated beams without chemical or half-life
dependence

— Same setup for all elements with short development times

e 2.1 GeV 3He (1GeV protons) at 400 kW intensity for ISOL

targets
sl LINAC 2004



Summary
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 The science of rare isotope facilities:
 Nature of nucleonic matter — nuclei with special features
(e.g. "®Ni) and production of nuclei with sufficiently large N/Z
ratios (1.5 now to 2.0)
« Chemical evolution of the Universe (origin of the elements)
— produce nuclei relevant to the various astrophysical
processes
 Test of symmetries — requires the production of Radon and
Francium over a range of isotopes
e There a number of approaches. The two main categories are in-
flight and 1ISOL
* RIA uses a superconducting LINAC to provide the most
efficient acceleration of primary beams, access to all production
mechanisms and a wide range of secondary beam energies.

LINAC 2004
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At the moment we are limited in our view of

the atomic nucleus
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RIA Will Greatly Expand Our Horizons
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Thank you LINAC technology.
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The Chart of the Nuclides
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In- fllqht
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ISAC
SPIRAL

ISOLDE
EURISOL

* Provides beams with energy near that of the primary beam
— For experiments that use high energy reaction mechanisms
— Thick secondary targets, kinematic focusing
— Individual ions can be identified

« Efficient, Fast (100 ns), chemically independent separation
o Capture in storage rings

» Production target is relatively simple

RIA

e Good Beam quality (m mm-mr vs. 10s 1 mm-mr transverse)
« Small beam energy spread for fusion studies

e Can use chemistry to limit the elements released

o 2-step targets provide a path to 400kW targets

e High beam intensity leads to 100x gain in secondary ions
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Summary of the key science requirements

Production of benchmark nuclei: traditional closed shell
nuclei 1%9Sn, 132Sn, 78Ni and new magic nuclei ®°Ca

Nuclel with large neutron skins (most extreme changes in
structure)

Production of very weakly bound nuclei such as #°Mg.
Nuclei along the neutron drip line as heavy as possible.

Nuclei along the r-process path. Particularly important are
the N=126 closed shell nuclei.

Sufficient quantities of N=Z nuclei below °°Sn to study
proton capture reactions (often this requires 1019 ions/s) —
novae, X-ray burst, X-ray sources, ...

Radon and Francium isotopes at (1011/s) over a wide range

LINAC 2004



Symmetry studies
In Francium 126

Specific nuclel
offer new

- : opportunities for
Weak interaction _— precision tests of:
N A studies - Hﬁf; :
5 in N=Z nucleli = | g
e — .
S 2 ] EDM search .CP a.nd P
= in Radium violation
S e Unitarity of
S CKM matrix
= * Physics beyond
VA

* Sin‘0,, at low q
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Avallablllty of Neutron Skin Nuclel
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Systematic Studies are Essential for Nuclear

Energy (MeV)
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@ S. Pieper, R. Wiringa, et al.
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Difference in Fermi Levels Results in Skins™

Neutrons

Unlr}

—

Protons

li,ir}

Coulomb
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Woods-Saxon potential

U(r) =

—V

1+e

* the neutron EOS also

(r-R)/a

plays a role and the size of the

neutron skin is related to the volume symmetry energy.
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