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The Science of  RIA 

Brad Sherrill
Why build a high-power, heavy-ion LINAC?

• Introduction
• The intellectual challenges addressed by RIA (Nuclei, 
Chemical History of the Universe, Fundamental Symmetries)
• Production of rare isotopes – options and considerations
• What does SRF technology and the RIA concept make 
possible?
• Summary



We don’t know nuclei that well – Binding Energies

LINAC 2004
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An Example of a Nuclear Halo
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A scaled cartoon

1 fm

Halo Nucleus                 Normal Nucleus

Two effects : QM penetration (halo) and a difference in 
proton and neutron Fermi levels (skins)



NRC Report: Connecting Quarks to the Cosmos
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Eleven Science Questions for the New Century (2003) – National 
Academy Study, M. Turner Chair
— What is dark matter?
— What is the nature of the dark energy?
— How did the Universe begin?
— Did Einstein have the last word on gravity?
— What are the masses of the neutrinos and how have they shaped the evolution of 

the universe?
— How do cosmic accelerators work and what are they accelerating?
— Are protons unstable?
— Are there new states of matter at exceedingly high density and temperature? 
— Are there additional space-time dimensions? 

How were the heavy elements from iron to uranium made?
— Is a new theory of matter and light needed at the highest energies?

NEW: US Interagency Task Force stated that Underground Lab, 
RIA, RHIC II are needed to meet these goals. http://www.ostp.gov/



Rapid Neutron Capture Process (r-process)
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How were the heavy elements from iron to uranium made? 
Two possibilities (there are others):

Woosley … Thieleman …



Importance of Nuclear Physics in the r-process
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In r-process model calculations nuclear shell structure is important.
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Question: Is this difference due to shell quenching for 
neutron-rich nuclei, or a problem with astrophysical model?

Question: Is this difference due to shell quenching for 
neutron-rich nuclei, or a problem with astrophysical model?



Possibilities to study r-process nuclei
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Needed Data for r-process nuclei:
• Masses
• Decay properties
• Level structure
• n capture rates  (indirectly)



Summary of the scientific justification for JWST
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• What is the shape of the 
Universe? 

• How do galaxies evolve? 

• How do stars and planetary 
systems form and interact? 

• How did the Universe build up it 
present elemental/chemical 
composition? 

• What is dark matter? 
James Webb Space Telescope
NASA/EESC/CSA

http://ngst.gsfc.nasa.gov/science/ScienceGoals.htm



The Active Universe- Gamma Ray Astronomy 
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1 MeV-30 MeV
γ-Radiation in Galactic Survey

44Ti in Supernova Cas-A Location
1.157 MeV γ-radiation
(Half life: 60 years)

(26Al Half life: 700,0000 years)

M.Wiescher



Observation of 26Al Demonstrates Nucleosynthesis

LINAC 2004

N. Prantzos, Astonomy & Astro 420 (2004)

The observation indicates 2 solar masses of 26Al produced 
per My (1.5x1042 atoms/s). How?
• Type II Supernovae 

60Fe/26Al ratio is a problem
measured by RHESSI to be 0.16 (predicted >0.4)
59Fe(n,γ) is critical but 59Fe is radioactive

• Novae
• Wolf-Rayet Stars
Needed: Better observations and better nucleosynthesis 
calculations



Rare Isotopes and Fundamental Symmetries
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An example of the 
so called running 
of fundamental 
constants.

Prediction of the 
Standard Electro-
Weak Theory

G. Sprouce

QWeak

?
E158

Rare-isotope facilities provide a credible path to necessary 
improvements on parity non-conservation in atoms.
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Radioactive Beam Production Mechanisms

• Projectile Fragmentation/Fission

• Target Spallation and fragmentation

• Neutron induced fission (2-step target)

Post Acceleration

Driver Accelerator
Fragment Separator

beam

Gas cell catcher/ion source

LINAC

LINAC
Target/Ion Source

Neutrons

Post Acceleration

Post Acceleration

Beams used without stopping

beam

target

beam

target



Optimum Mechanism for each Isotope
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Optimum production
method for low-energy beams

Standard ISOL technique

Two-step fission

In-flight fission + gas cell

Fragmentation + gas cell

Most facilities use only one production method.



Requirements
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• Production cross sections for the interesting nuclei 
at the limits of stability are low (fb), thus as high 
as possible primary beam intensities are needed.  
Uranium Luminosity = 1 pb-1s-1

• There is no overall optimum production 
mechanism – we would like have access to all.

• Secondary beams from 60 kV to 1 GeV/u are 
needed to extract the science.

Solution:
SRF technology – Primary, high intensity, linear 

accelerator and efficient secondary accelerator



Rare Isotope Accelerator - RIA
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• Efficient acceleration of elements up to uranium at 2.4x1013/s and E > 
400 MeV/nucleon. Beam power of 400 kW.
• Possibility to optimize the production method for a given nuclide.
• Secondary beams at energies from 60 kV to 400 MeV/u .

Schematic of 
the RIA 
Concept



Artist’s Conception of RIA at ANL
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RIA SRF Cavities – All Tested by 2003
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Legnaro
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β=0.49 Cryomodule Prototype (THP70)

LINAC 2004NSCL



Tests of Nuclear Models – Binding Energies
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Changes in nuclear shell structure for n-rich nuclei
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Phil. Trans. R. Soc. Lond. A 356, 2007 (1998)
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J. Dobaczewski and W. 
Nazarewicz The nuclear mean field 

potential is dependent 
on the number and type 
of nucleons present in 
the nucleus.

Shell structure for very 
asymmetric nuclear 
matter will be different 
than for normal N=Z
nuclear material.



Weakening of Shell Structure in Exotic Nuclei
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Extreme Halos Reachable at RIA
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Nuclear Science needs to study n/p degree of freedom
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Very hard

Approach

RIA-Fair-ISACNecessary to know what effective 
interactions operate in nuclei
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Nuclear Microphysics of the Universe 
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What is Unique about the RIA linac?
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• Possibility to optimize the production method
• Multiple charge state acceleration 

– 400kW beam power
– highest efficiency for rare stable isotope acceleration, e.g., 

48Ca, 124Sn (this can yield gains of 100 to 1000)
• Intense Uranium Beams at 400 MeV/u and 400 kW
• Liquid Li production target + fragment separator + gas catcher 

system
– Ability to handle 400 kW beams
– Precision reaccelerated beams without chemical or half-life 

dependence
– Same setup for all elements with short development times

• 2.1 GeV 3He ( 1 GeV protons) at 400 kW intensity for ISOL 
targets



Summary
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• The science of rare isotope facilities:
• Nature of nucleonic matter – nuclei with special features 
(e.g. 78Ni) and production of nuclei with sufficiently large N/Z 
ratios (1.5 now to 2.0)
• Chemical evolution of the Universe (origin of the elements) 
– produce nuclei relevant to the various astrophysical 
processes
• Test of symmetries – requires the production of Radon and 
Francium over a range of isotopes

• There a number of approaches. The two main categories are in-
flight and ISOL
• RIA uses a superconducting LINAC to provide the most 
efficient acceleration of primary beams, access to all  production 
mechanisms and a wide range of secondary beam energies.
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At the moment we are limited in our view of 
the atomic nucleus

Some Basic Nuclear Property



RIA Will Greatly Expand Our Horizons
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Thank you LINAC technology.



The Chart of the Nuclides
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Neutron Drip Line?

Proton
Drip Line?

Known Nuclei

Heavy Elements?

Fission
Limit?



Advantages/Disadvantages of ISOL/In-Flight
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• Good Beam quality  (π mm-mr vs. 10s π mm-mr transverse)
• Small beam energy spread for fusion studies
• Can use chemistry to limit the elements released
• 2-step targets provide a path to 400kW targets
• High beam intensity leads to 100x gain in secondary ions

• Good Beam quality  (π mm-mr vs. 10s π mm-mr transverse)
• Small beam energy spread for fusion studies
• Can use chemistry to limit the elements released
• 2-step targets provide a path to 400kW targets
• High beam intensity leads to 100x gain in secondary ions

• Provides beams with energy near that of the primary beam
– For experiments that use high energy reaction mechanisms
– Thick secondary targets, kinematic focusing
– Individual ions can be identified

• Efficient, Fast (100 ns), chemically independent separation
• Capture in storage rings
• Production target is relatively simple

• Provides beams with energy near that of the primary beam
– For experiments that use high energy reaction mechanisms
– Thick secondary targets, kinematic focusing
– Individual ions can be identified

• Efficient, Fast (100 ns), chemically independent separation
• Capture in storage rings
• Production target is relatively simple

In-flight:
GSI
RIKEN
NSCL
GANIL
RIA

ISOL:
HRIBF
ISAC
SPIRAL
ISOLDE
EURISOL
RIA



Summary of the key science requirements
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• Production of benchmark nuclei: traditional closed shell 
nuclei 100Sn, 132Sn, 78Ni and new magic nuclei 60Ca

• Nuclei with large neutron skins (most extreme changes in 
structure)

• Production of very weakly bound nuclei such as 42Mg. 
Nuclei along the neutron drip line as heavy as possible.

• Nuclei along the r-process path. Particularly important are 
the N=126 closed shell nuclei.

• Sufficient quantities of N=Z nuclei below 100Sn to study 
proton capture reactions (often this requires 1010 ions/s) –
novae, X-ray burst, X-ray sources, …

• Radon and Francium isotopes at (1011/s) over a wide range



Tests of the Standard Model
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Availability of Neutron Skin Nuclei
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Excess of Neutron Radius
R = Rn – Rp
Mizutori et al. PRC 61(00) 044326

10/day
100/s

RIA Rates

Two problems: (1) Make them (2) Study them 
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Systematic Studies are Essential for Nuclear 
Theory

S. Pieper, R. Wiringa, et al.



Difference in Fermi Levels Results in Skins*
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* the neutron EOS also plays a role and the size of the 
neutron skin is related to the volume symmetry energy.
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