A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wang, S.

Paper Title Page
TUP90 Improvements of RF Characteristics in the SDTL of the J-PARC Proton LINAC 489
 
  • S. Wang
    IHEP Beijing, Beijing
  • T. Kato
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
 
  A separated drift tube linac (SDTL)* was selected as an accelerator structure of Japan Proton Accelerator Complex (J-PARC), which follows DTL. The SDTL of J-PARC consists of 32 short tanks, ranging from 1.5 to 2.5 m in length. A design of frequency tuners of the SDTL was performed by taking account of 3-D field distribution calculated with MAFIA. The effects of stems on the resonant frequency and field distribution were also analyzed. An easy and effective compensation method for perturbation by stems of both end cells was proposed and applied to the SDTL tanks.

* T. Kato. Proposal of a Separated-type Proton Drift Tube Linac for a Medium-Energy Structure. KEK Report 92-10, (1992)

 
THP69 The Tuning Study of the Coupled Cavities for the RF Chopper System of J-PARC 770
 
  • S. Wang, S. Fu
    IHEP Beijing, Beijing
  • T. Kato
    KEK, Ibaraki
 
  A 3 MeV medium-energy beam transport line (MEBT) is located between RFQ and DTL in the linac of the Japan Proton Accelerator Research Complex (J-PARC). MEBT accomplishes beam matching and chopping. An rf deflector (RFD), which is a heavily loaded cavity, was adopted as a chopper in J-PARC linac for chopping 500 μs long macropulses from the ion source into sub-pulses for injecting into the following 3 GeV rapid-cycling ring. A coupled RFD system was proposed in the design of chopper system for saving the cost of rf power source. The tuning of the coupled RFD system was successfully performed. The longer rise time of the second RFD and the delay of the second RFD excitation were found during the tuning of the coupled RFD system, and these phenomena were further analyzed and investigated. Both in the high power and beam tests, the chopper worked well without any discharge under 36 kW peak driving power.