A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Paramonov, V.V.

Paper Title Page
MOP18 Cold-Model Tests and Fabrication Status for J-PARC ACS 75
 
  • H. Ao, H. Akikawa
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa, A. Ueno
    JAERI, Ibaraki-ken
  • N. Hayashizaki
    TIT, Tokyo
  • M. Ikegami, S. Noguchi
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    J-PARC, Ibaraki-ken
 
  The J-PARC (Japan Proton Accelerator Research Complex) LINAC will be commissioned with energy of 181-MeV using 50 keV ion source, 3 MeV RFQ, 50 MeV DTL and 181 MeV SDTL (Separated DTL) on September 2006. It is planed to be upgraded by using 400 MeV ACS (Annular Coupled Structure), which is a high-beta structure most suitable for the J-PARC, in a few years from the commissioning. The first ACS cavity, which will be used as the first buncher between the SDTL and the ACS, is under fabrication. Detailed design and tuning procedure of ACS cavities has been studied with RF simulation analysis and cold-model measurements. The results of cold-model measurements, fabrication status, and related development items are described in this paper.  
MOP77 Design Parameters of the Normal Conducting Booster Cavity for the PITZ-2 Test Stand 204
 
  • V.V. Paramonov, N.I. Brusova, A.I. Kvasha, A. Menshov, O.D. Pronin, A.K. Skasyrskaya, A.A. Stepanov
    RAS/INR, Moscow
  • A. Donat, M. Krasilnikov, A. Oppelt, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Flöttmann
    DESY, Hamburg
 
  The normal conducting booster cavity is intended to increase the electron bunch energy in the Photo Injector Test (DESY, Zeuthen) stage 2 experiments. The normal conducting cavity is selected due to infrastructure particularities. The L-band cavity is designed to provide the accelerating gradient up to 14 MV/m with the total input RF power 8.6 MW, RF pulse length up to 900 mks and repetition rate 5 Hz. The multi-cell cavity is based on the CDS compensated accelerating structure with the improved coupling coefficient value. The main design ideas and decisions are described briefly together with cavity parameters - RF properties, cooling and pumping circuits.  
TUP21 Beam Dynamics Design of J-PARC Linac High Energy Section 339
 
  • M. Ikegami, T. Kato, S. Noguchi
    KEK, Ibaraki
  • H. Ao, Y. Yamazaki
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa, T. Ohkawa, A. Ueno
    JAERI, Ibaraki-ken
  • N. Hayashizaki
    TIT, Tokyo
  • V.V. Paramonov
    RAS/INR, Moscow
 
  J-PARC linac consists of a 3 MeV RFQ linac, a 50 MeV DTL (Drift Tube Linac), a 190 MeV SDTL (Separate-type DTL), and a 400 MeV ACS (Annular-Coupled Structure) linac. Recently, the beam dynamics design of the ACS part has been slightly modified to reduce construction cost. Namely, the number of klystron modules are reduced from 23 to 21, and the number of accelerating cells in one klystron module is increased from 30 to 34 to maintain the total energy gain. This design change curtails the margin for RF power by around 5 %, and the total length of the ACS section is nearly unchanged. The beam matching section between SDTL and ACS is also revised correspondingly. These modifications of the design are described in this paper together with 3D particle simulation results for the new design.  
TUP90 Improvements of RF Characteristics in the SDTL of the J-PARC Proton LINAC 489
 
  • S. Wang
    IHEP Beijing, Beijing
  • T. Kato
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
 
  A separated drift tube linac (SDTL)* was selected as an accelerator structure of Japan Proton Accelerator Complex (J-PARC), which follows DTL. The SDTL of J-PARC consists of 32 short tanks, ranging from 1.5 to 2.5 m in length. A design of frequency tuners of the SDTL was performed by taking account of 3-D field distribution calculated with MAFIA. The effects of stems on the resonant frequency and field distribution were also analyzed. An easy and effective compensation method for perturbation by stems of both end cells was proposed and applied to the SDTL tanks.

* T. Kato. Proposal of a Separated-type Proton Drift Tube Linac for a Medium-Energy Structure. KEK Report 92-10, (1992)

 
TUP97 Some Estimations for Correlation Between the RF Cavity Surface Temperature and Electrical Breakdown Possibility 507
 
  • V.V. Paramonov
    RAS/INR, Moscow
 
  The electrical breakdown in accelerating cavities is the complicated phenomenon and depends on many parameters. Some reasons for breakdown can be avoided by appropriate vacuum system design and the cavity surface cleaning. This case, for normal conducting accelerating cavities free electrons - the dark currents due to Fowler-Nordheim emission can be considered as the main reason of possible electrical breakdown. It is known from the practice - the combination of the high electric field at the cavity surface with high surface temperature is the subject for risk in the cavity operation. In this paper the dependence on the surface temperature is considered and 'effective' electric field enhancement is discussed.  
THP90 The Technique for the Numerical Tolerances Estimations in the Construction of Compensated Accelerating Structures 812
 
  • V.V. Paramonov, A.K. Skasyrskaya
    RAS/INR, Moscow
 
  The requirements to the cells manufacturing precision and tining in the multi-cells accelerating structures construction came from the required accelerating field uniformity, based on the beam dynamics demands. The standard deviation of the field distribution depends on accelerating and coupling modes frequencies deviations, stop-band width and coupling coefficient deviations. These deviations can be determined from 3D fields distribution for accelerating and coupling modes and the cells surface displacements. With modern software it can be done separately for every specified part of the cell surface. Finally, the cell surface displacements are defined from the cell dimensions deviations. This technique allows both to define qualitatively the critical regions and to optimize quantitatively the tolerances definition.