A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Palmieri, A.

Paper Title Page
MOP16 The TRASCO-SPES RFQ 69
 
  • A. Pisent, M. Comunian, J. Esposito, A. Palmieri
    INFN/LNL, Legnaro, Padova
  • E. Fagotti
    INFN Milano, Milano
  • G. Lamanna
    CINEL, Vigonza (PD)
  • M. S. Mathot
    CERN, Geneva
 
  A high intensity RFQ is under construction at LNL. Developed within TRASCO research program, the Italian feasibility study an ADS (Accelerator Driven System), it will be employed as the first accelerating element of SPES facility, the ISOL project of LNL. The RFQ operates at the frequency of 352 MHz in CW mode, is able to deliver a proton current up to 30 mA and consists of six brazed segments whose length is 1.2 m. In this article the results obtained from the construction of a 20 cm “technological model”, aimed at testing the construction procedure of the final structure, will be discussed. Finally we will report about the machining and the outcomes obtained after RF testing of the first two segments built up to now.  
TUP18 Beam Dynamics Issues of SPES-1 Linac 330
 
  • E. Fagotti
    INFN Milano, Milano
  • M. Comunian, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro, Padova
 
  An Independent Superconducting Cavity Linac able to accelerate 10 mA CW proton beam up to 20 MeV has been studied for the SPES-1 project. This paper presents the results of beam dynamics studies through SPES linac including mapped fields effects on cavities and magnets.  
TUP19 Characterization of Beam Parameter and Halo for a High Intensity RFQ Output under Different Current Regimes 333
 
  • E. Fagotti
    INFN Milano, Milano
  • M. Comunian, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro, Padova
 
  The characterization of the beam distribution at the exit of a high intensity RFQ is a crucial point in view of a correct simulation of beam behavior in the following linac structure. At this scope we need to know the beam halo quantification as a function of the input beam and RFQ parameters. In this paper, the description of Beam halo based upon moments of the particle distribution at the exit of the TRASCO-RFQ is given.