A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kobayashi, T.

Paper Title Page
MOP80 Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun 207
 
  • H. Tomizawa, T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, A. Mizuno, S. Suzuki, T.  Taniuchi, K. Yanagida
    JASRI-SPring-8, Hyogo
  • F. Matsui
    FKLAB, Fukui City
 
  The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the both spatial and temporal UV-laser profiles with a feedback routine at the same time. We report herein the principle and developing process of our laser beam quality control system.  
TUP06 Results of the High-Power Conditioning and the First Beam Acceleration of the DTL-1 for J-PARC 300
 
  • F. Naito, S. Anami, J. Chiba, Y. Fukui, K. Furukawa, Z. Igarashi, K. Ikegami, M. Ikegami, E. Kadokura, N. Kamikubota, T. Kato, M. Kawamura, H. Kobayashi, C. Kubota, E. Takasaki, H. Tanaka, S. Yamaguchi, K. Yoshino
    KEK, Ibaraki
  • K. Hasegawa, Y. Kondo, A. Ueno
    JAERI, Ibaraki-ken
  • T. Itou, Y. Yamazaki
    JAERI/LINAC, Ibaraki-ken
  • T. Kobayashi
    J-PARC, Ibaraki-ken
 
  The first tank of the DTL for Japan Proton Accelerator Research Complex (J-PARC) was installed in the test facility at KEK. The DTL tank is 9.9 m in length and consists of the 76 cells. The resonant frequency of the tank is 324 MHz. After the installation of the tank, the high-power conditioning was carried out deliberately. Consequently the peak rf power of 1.3 MW (pulse repetition 50 Hz, pulse length 600 μs) was put into the tank stably. (The required power is about 1.1 MW for the designed accelerating field of 2.5 MV/m on the axis.) Following the conditioning, negative hydrogen beam, accelerated by the RFQ linac up to 3 MeV, was injected to the DTL and accelerated up to its design value of 19.7 MeV. The peak current of 30 mA was achieved with almost 100% transmission. In this paper, the conditioning history of the DTL and the result of the first beam test will be described.  
THP52 RF Reference Distribution System for the J-PARC Linac 727
 
  • T. Kobayashi, E. Chishiro
    JAERI, Ibaraki-ken
  • S. Anami, S. Michizono, S. Yamaguchi
    KEK, Ibaraki
 
  J-PARC (Japan Proton Accelerator Complex) linac, which is 300 m long, consists of 324 MHz accelerating section of the upstream and 972 MHz section (as future plan) of the downstream. In the klystron gallery, totally about 50 RF source control stations will stand for the klystrons and solid-state amplifiers. The error of the accelerating field must be within ±1° in phase and ±1% in amplitude. Thus, the high phase stability is required to the RF reference for all of the low-level RF control systems and the beam monitor systems. This paper presents a final design of the RF reference distribution system for this linac. The RF reference (12 MHz) is distributed to all stations optically. Low-jitter E/O and O/E with temperature stabilizers are developed. The reference is optically amplified and divided into 14 transmission lines, and is delivered through PSOF (the phase-stabilized optical fiber), the temperature of which is stabilized by cooling water. Each of the transmitted signals is divided more into 4 signals by an optical coupler. Our objective for the phase stability of the reference aims at <±0.3° at a 972 MHz frequency.  
THP56 Control of the Low Level RF System for J-Parc Linac 739
 
  • S. Michizono, S. Anami, E. Kadokura, S. Yamaguchi
    KEK, Ibaraki
  • E. Chishiro, T. Kobayashi, .H. Suzuki
    JAERI, Ibaraki-ken
 
  A low level RF (LLRF) system for J-Parc linac generates RF and clock signals, drives a klystron, and stabilizes accelerating fields in the cavities. The LLRF system is controlled by two units: a programmable logic controller (PLC) and a compact PCI (cPCI) controller. Functions of the PLC are ON/OFF and UP/DOWN controls, and STATUS and ANALOG monitors. The PLC is locally operated by a touch panel, and remotely operated by an EPICS IOC with Ethernet communication. The cPCI controller is for RF feedback and feed-forward controls, including a cavity tuner control, and then, locally and remotely operated by communication with the PLC. On the other hand, RF waveform data, which are stored in the memory of DSP and CPU boards in the cPCI, are directory transmitted to an EPICS OPI by a request from EPICS.  
TUP73 Beam Instrumentation Using BPM System of the SPring-8 Linac 438
 
  • K. Yanagida, T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, A. Mizuno, S. Suzuki, T.  Taniuchi, H. Tomizawa
    JASRI-SPring-8, Hyogo
 
  A beam position monitor (BPM) system of the SPring-8 linac has been operated since 2002. The following upgrade programs have been carried out during this period: The BPMs were installed in the linac's dispersive sections. A synchronized accumulation of beam position data into the database system started. A feedback control of steering magnets for beam position stabilization has been under development. In this conference the authors report a performance of the BPM system, and discuss its usefulness for beam diagnostics, machine diagnostics and beam stabilization.  
THP57 Digital Feedback System for J-Parc Linac RF Source 742
 
  • S. Michizono, S. Anami, S. Yamaguchi
    KEK, Ibaraki
  • T. Kobayashi
    J-PARC, Ibaraki-ken
 
  At the proton linac of J-Parc (Japan Proton Accelerator Research Complex), an accelerating electric field stability of ±1% in amplitude and ±1° in phase is required for the RF system. In order to accomplish these requirements, a digital feedback system is adopted for flexibility of the feedback (FB) and feed forward (FF) algorism implementation. FPGAs are used for the real-time FB system. A DSP board is also utilized for data processing and communication between FPGAs and a crate control CPU (Host). The system was examined with the DTL cavity and it satisfies the stability specification. In this report, the digital rf system is described and operational stability is also summarized.