A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hozumi, Y.

Paper Title Page
THP25 Development of Field-Emission Electron Gun from Carbon Nanotubes 651
 
  • Y. Hozumi
    GUAS/AS, Ibaraki
  • M. Ikeda, S. Ohsawa, T. Sugimura
    KEK, Ibaraki
 
  Aiming to use a narrow energy-spread electron beam easily and low costly on injector electron guns, we have been tested field emission cathodes of carbon nanotubes (CNTs). Experiments for these three years brought us important suggestions and a few rules of thumb. Now at last, anode current of 3.0 [A/cm2] was achieved with 8 kV acceleration voltage by applying short grid pulses between cathode-grid electrodes. In order to proof utility, 100 kV gun system had been designed and structured since last year. Then the value of 300 mA was obtained based on 10-5…10-6 [Pa] back ground pressures. With some improvements anode currents of Ampere order is expected.  
THP29 Development of C-band Accelerating Section for SuperKEKB 663
 
  • T. Kamitani, N. Delerue, M. Ikeda, K. Kakihara, S. Ohsawa, T. Oogoe, T. Sugimura, T. Takatomi, S. Yamaguchi, K. Yokoyama
    KEK, Ibaraki
  • Y. Hozumi
    GUAS/AS, Ibaraki
 
  For the luminosity upgrade of the present KEK B-factory to SuperKEKB, the injector linac has to increase the positron acceleration energy from 3.5 to 8.0 GeV. In order to double the acceleration field gradient from 21 to 42 MV/m, design studies on C-band accelerator module has started in 2002. First prototype 1-m long accelerating section has been fabricated based upon a design which is half scale of the present S-band section. High power test of the C-band section has been performed at a test stand and later at an accelerator module in the KEKB injector linac. In a beam acceleration test, a field gradient of 41 MV/m is achieved with 43 MW RF power from a klystron. This paper report on the recent status of the high-power test and also the development of a second prototype section.