A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hofler, A.

Paper Title Page
MOP69 RF Control Modelling Issues for Future Superconducting Accelerators 180
 
  • A. Hofler, J. R. Delayen
    TJNAF, Newport News, Virginia
  • V. Ayvazyan, A. Brandt, S. Simrock
    DESY, Hamburg
  • T. Czarski
    WUT, Warsaw
  • T. Matsumoto
    KEK, Ibaraki
 
  The development of superconducting accelerators has reached a high level of maturity following the successes of ATLAS at Argonne, CEBAF at Jefferson Lab, the TESLA Test Facility at DESY and many other operational accelerators. As a result many new accelerators under development (e.g. SNS) or proposed (e.g. RIA) will utilize this technology. Covering all aspects from cw to pulsed rf and/or beam, non-relativistic to relativistic particles, medium and high gradients, light to heavy beam loading, linacs, rings, and ERLs, the demands on the rf control system can be quite different for the various accelerators. For the rf control designer it is therefore essential to understand these issues and be able to predict rf system performance based on realistic rf control models. This paper will describe the features that should be included in such models and present an approach which will drive the development of a generic rf system model.  
TUP79 A New RF System for the CEBAF Normal Conducting Cavities 456
 
  • C. Hovater, H. Dong, A. Hofler, G. Lahti, J. Musson, T. Plawski
    TJNAF, Newport News, Virginia
 
  The CEBAF Accelerator at Jefferson Lab is a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. CEBAF also has numerous normal conducting cavities for beam conditioning in the injector and for RF extraction to the experimental halls. The RF systems that presently control these cavities are becoming expensive to maintain, therefore a replacement RF control system is now being developed. For the new RF system, cavity field control is maintained digitally using an FPGA which contains the feedback algorithm. The system incorporates digital down conversion, using quadrature under-sampling at an IF frequency of 70 MHz. The VXI bus-crate was chosen as the operating platform because of its excellent RFI/EMI properties and its compatibility with the EPICS control system. The normal conducting cavities operate at both the 1497 MHz accelerating frequency and the sub-harmonic frequency of 499 MHz. To accommodate this, the new design will use different receiver-transmitter daughter cards for each frequency. This paper discuses the development of the new RF system and reports on initial results.