A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Carlsten, B.E.

Paper Title Page
TUP91 Compact Electron-Linac Design Concept for a Gamma Ray Source 492
 
  • K. C. D. Chan, B.E. Carlsten, G. Dale, R. Garnett, C. Kirbie, F.L. Krawczyk, S.J. Russell, T.P. Wangler
    LANL, Los Alamos, New Mexico
  • E. Wright
    CPI, Palo Alto, California
 
  Gamma-ray sources, particularly sources that are easily transportable, are in high demand for different homeland security applications. We have carried out a review of commercially available electron-linac-based sources, and have investigated alternative compact electron-linac systems that use updated technologies compared with sources that are available commercially. As the results, we propose to develop a new source using an electron linac operating at 17 GHz. It uses a klystron, instead of a magnetron, and a IGBT-switched HV power supply. The source design takes advantages of the advances in X-band linac technology and solid-state HV technology. The higher frequency and upgraded technologies offer smaller size, lighter weight, better efficiency, easier operation, and higher reliability, compared with commercially-available linacs. In this paper, we will describe the source design and our choice of technologies.  
THP84 Design of a 300 GHz Broadband TWT Coupler and RF-Structure 794
 
  • F.L. Krawczyk, F.E. Sigler
    LANL/LANSCE, Los Alamos, New Mexico
  • B.E. Carlsten, L.M. Earley
    LANL, Los Alamos, New Mexico
  • J.M. Potter
    JP Accelerator Works, Inc., 2245, Los Alamos, NM
  • M.E. Schulze
    GA, Los Alamos
  • E. Smirnova
    MIT/PSFC, Cambridge, Massachusetts
 
  Recent LANL activities in millimeter wave structures focus on 94 and 300 GHz structures. They aim at power generation from low power (100–2000 W) with a round electron beam (120 kV, 0.1–1.0 A) to high power (2–100 kW) with a sheet beam structure (120 kV, 20 A). Applications cover basic research, radar and secure communications and remote sensing of biological and chemical agents. In this presentation the design and cold-test measurements of a 300 GHz RF-structure with a broadband (>6% bandwidth) power coupler are presented. The design choice of two input/output waveguides, a special coupling region and the structure parameters themselves are presented. As a benchmark also a scaled up version at 10 GHz was designed and measured. These results will also be presented.