A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Brunken, M.

 
Paper Title Page
TUP46 A New Control System for the S-DALINAC 372
 
  • M. Brunken, W. Ackermann, A. Araz, U. Bonnes, H.-D. Gräf, M. Hertling, A. Karnaukhov, W.F.O. Müller, O. Patalakha, M. Platz, A. Richter, B. Steiner, O. Titze, B. Truckses, T. Weiland
    TU Darmstadt, Darmstadt
 
  We will present recent results of the development of a new control system for the superconducting cw electron accelerator S-DALINAC. This system will be based on common industrial standards. Due to the large number of special devices existing to control the beamline, a simple and cheap communication interface is required to replace the current proprietary bus topology. The existing devices will be upgraded by a microcontroller based CAN bus interface as communication path to a control server. The servers themselves may be distributed over the location, giving required applications access to the device parameters through a TCP/IP connection. As application layer protocol for the Client Server communication a special binary protocol and a text protocol based on XML are considered.  
THP55 Electromagnetic Design of New RF Power Couplers for the S-DALINAC 736
 
  • M. Kunze, M. Brunken, H.-D. Gräf, W.F.O. Müller, A. Richter, T. Weiland
    TU Darmstadt, Darmstadt
 
  New rf power couplers for the Superconducting Darmstadt Linear Accelerator (S-DALINAC) injector have to be designed to transfer rf power of up to 2 kW to the electron beam. This allows injector operation at beam currents from 0.15 mA to 0.2 mA and electron energies up to 14 MeV. The new couplers should possibly provide a external Q of 5·106. The transverse kick should be as small as possible. The asymmetric field distribution of the couplers causes emittance growth of the electron beam and therefore the transverse kick has to be minimized. Electromagnetic simulations are applied to investigate different coupler designs and to localize possible problems at an early stage. Cavity external Q and transverse kick can be calculated from 3D electromagnetic eigenmode solutions. The present coaxial-coaxial input couplers at the S-DALINAC are limited to power operation below 500 W under full reflection. In order to reach power operation up to 2 kW a realizations of a low-kick waveguide coupler for the S-DALINAC injector is presented, namely a twin-waveguide coupler.  
Transparencies