A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Boffo, C.

Paper Title Page
MOP82 SRF Cavity and Materials R&D at Fermilab 213
 
  • N. Khabiboulline, P. Bauer, L. Bellantoni, T. Berenc, C. Boffo, R. Carcagno, C. Chapman, H. Edwards, L. Elementi, M. Foley, E. Hahn, D. Hicks, D. Mitchell, A. Rowe, N. Solyak, I. Terechkine
    FNAL, Batavia, Illinois
  • A. Gurevich, M. Jewell, D. C. Larbalestier, P. Lee, A. Polyanskii, A. Squitieri
    UW-Madison/ASC, Madison, Wisconsin
 
  Two 3.9 GHz superconducting RF cavities are under development at FNAL for use in the upgraded Photoinjector Facility. A TM110 mode cavity will provide streak capability for bunch slice diagnostics, and a TM010 mode cavity will provide linearization of the accelerating gradient before compression for better emittance. The status of these two efforts and a review of the FNAL infrastructure development will be given.  
THP33 Progress toward NLC/GLC Prototype Accelerator Structures 675
 
  • J. Wang, G. Bowden, V.A. Dolgashev, R.M. Jones, J. Lewandowski, C.D. Nantista, S.G. Tantawi
    SLAC/ARDA, Menlo Park, California
  • C. Adolphsen, D.L. Burke, J.Q. Chan, J. Cornuelle, S. Döbert
    SLAC/NLC, Menlo Park, California
  • T. Arkan, C. Boffo, H. Carter, N. Khabiboulline
    FNAL, Batavia, Illinois
  • N. Baboi
    DESY, Hamburg
  • D. Finley, I. Gonin, S. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Higashi, T. Higo, T. Kumi, Y. Morozumi, N. Toge, K. Ueno
    KEK, Ibaraki
  • Z. Li, R. Miller, C. Pearson, R.D. Ruth, P.B. Wilson, L. Xiao
    SLAC, Menlo Park, California
 
  The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).