A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Adolphsen, C.

 
Paper Title Page
THP33 Progress toward NLC/GLC Prototype Accelerator Structures 675
 
  • J. Wang, G. Bowden, V.A. Dolgashev, R.M. Jones, J. Lewandowski, C.D. Nantista, S.G. Tantawi
    SLAC/ARDA, Menlo Park, California
  • C. Adolphsen, D.L. Burke, J.Q. Chan, J. Cornuelle, S. Döbert
    SLAC/NLC, Menlo Park, California
  • T. Arkan, C. Boffo, H. Carter, N. Khabiboulline
    FNAL, Batavia, Illinois
  • N. Baboi
    DESY, Hamburg
  • D. Finley, I. Gonin, S. Mishra, G. Romanov, N. Solyak
    Fermilab, Batavia, Illinois
  • Y. Higashi, T. Higo, T. Kumi, Y. Morozumi, N. Toge, K. Ueno
    KEK, Ibaraki
  • Z. Li, R. Miller, C. Pearson, R.D. Ruth, P.B. Wilson, L. Xiao
    SLAC, Menlo Park, California
 
  The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).  
THP34 A High-Power Test of an X-Band Molybdenum-Iris Structure 678
 
  • W. Wuensch, A. Grudiev, T. Heikkinen, I. Syratchev, T. Taborelli, I. Wilson
    CERN, Geneva
  • C. Adolphsen
    SLAC/NLC, Menlo Park, California
  • S. Döbert
    SLAC, Stanford
 
  In order to achieve accelerating gradients above 150 MV/m, alternative materials to copper are being investigated by the CLIC study. The potential of refractory metals has already been demonstrated in tests in which a tungsten-iris and a molybdenum-iris structure reached 150 and 193 MV/m respectively (30 GHz and a pulse length of 15 ns). In order to extend the investigation to the pulse lengths required for a linear collider, a molybdenum-iris structure scaled to X-band was tested at the NLCTA. The structure conditioned to only 65 MV/m (100 ns pulse length) in the available testing time and much more slowly than is typical of a copper structure. However the structure showed no sign of saturation and a microscopic inspection of the rf surfaces corroborated that the structure was still at an early stage of conditioning. The X-band and 30 GHz results are compared and what has been learned about material quality, surface preparation and conditioning strategy is discussed.  
Transparencies