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Abstract

A CW high power linear accelerator can only work
with very low particles losses and structure activation. At
low energy, the RFQ is a very sensitive element to losses.
To design the RFQ, a good understanding of the beam
dynamics is requested. Generally, the reference code
PARMTEQM is enough to design the accelerator.
TOUTATIS has been written with goals of cross-checking
results and obtaining a more reliable dynamics. This paper
relates the different numerical methods used in the code.
It is time-based, using multigrids methods and adaptive
mesh for a fine description of the forces without being
time consuming. The field is accurately calculated
through a Poisson solver and the vanes are fully described,
allowing to properly simulate the coupling gaps and RFQs
extremities. Differences with PARMTEQM and
LIDOS.RFQ are shown.

1  TOUTATIS ALGORITHM
The scheme used by TOUTATIS to simulate the beam

dynamics in RFQ is simple. The charge distribution, ρ, is
discretized in a 3D mesh with a “cloud in cell” scheme. In
the same grid, the vane geometry is embedded and likened
to a Dirichlet boundary. The Poisson equation is solved
with the obtained grid. The solver is detailed in the
following sections. Finally, forces are extracted from the
potential. This scheme allows to take into account external
fields, space charge and image effects. Forces are applied
to macro-particles via the following step to step scheme:
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(Eq. 1)

with δt, the time step; E, the electrical field; r, βc, γ, q,
m, respectively the position, speed, relativistic factor,
charge and mass of the particle. The main advantage of
this scheme is that its Jacobian is strictly equal to one.
Then, the code is preserved from phoney damping of
emittance which may occur with “leap frog” scheme [1].
This algorithm can be looped to reach any longitudinal
position in the RFQ.

2  FINITE DIFFERENCE METHOD
In TOUTATIS, the Poisson equation is solved using the

Finite Difference Method. The purpose of this section is
not to describe in detail this well known method. The
reader will find in literature many specialized books [2,3].
Only the main principles are presented.

In the mesh (Fig.1), a particular node, labelled 0, is
bind to its neighbours, labelled from 1 to 6, by a finite
equation. This equation is a function of the electrical
potential on each node, Ψi, the charge density on the
considered node, ρ0, and some weighed coefficients, αi:

 ∑
=

Ψαρ=Ψ
6
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ii00 ),(f          (Eq. 2)

 The coefficients are function of the distance between
nodes, hi.

 Figure 1: Illustration of the Finite Difference Method.

 
 This kind of weighting allows to take into account the

vane shape very accurately. The famous “stairs”
discretization is then avoided. The principle is to compute
each node of the grid with its associated equation taking
into account the new values calculated for the previous
nodes. Once all nodes of the mesh computed, the scheme
can be looped to reach convergence, in other words, until
the values of the electrical potential don’t change
anymore. This particular way to use finite difference
equation is called Gauss-Seidel relaxation. The accuracy
of this method is only a function of h. When h tends
towards zero, the solution becomes exact [2]. However,
the convergence is slow enough to become prohibitive for
the simulation of a whole RFQ with reasonable values of
h and δt. For instance, one week of computation on a
Pentium 450 MHz is necessary for the IPHI design [4].
Several methods have been developed to get acceleration
of the relaxation process. We can quote the Chebyshev
acceleration [5] and the Frankel-Young acceleration [2].
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The next section describes the method used by
TOUTATIS to reduce this computation time from one
week to 5 hours.

 3  MULTIGRID METHODS
 Practical multigrid methods were first introduced in the

1970s by Brandt [6]. Basically, we need to solve the
following equation:

 ρ=∆Ψ (Eq. 3)
 

 with ρ, the source term; Ψ, the researched scalar
potential; ∆, the Laplacian operator. The source term is
discretized in a fine grid. Performing i Gauss-Seidel
cycles on this fine grid, we obtain a rough estimation, Ψi,
of Ψ. The Laplacian of Ψi is not equal to ρ,  the
difference:

 ρ−∆Ψ=ρ ii~ (Eq. 4)
 

 is called the residual or defect. This residual is the
solution of a second Poisson equation dealing with the
error:

 ii ~~ ρ=Ψ∆ (Eq. 5)

 where i~Ψ  is the scalar correction which allows to get Ψ
via the relationship:

 ii ~Ψ−Ψ=Ψ (Eq. 6)
 

 This is an important point in multigrid methods, we are
going to estimate the error after a few relaxations rather
than the final solution Ψ step by step. In order to get rapid
estimation of this error, the equation (Eq. 5) is solved
performing a relaxation process using a coarser grid, the
residual having been previously discretized in this new
mesh (restriction). This coarser grid is also marred by
mistakes which can be estimated employing the same
technique, and so on…To correct one fine grid with the
coarser one result, an interpolation process, named
prolongation, is performed. This is the main principle of
the multigrid methods. The user has to combine the
different stages in respect of his problem. This gives many
possibilities of cycle architectures. We can quote the V
cycle which is very common [7]. The cycle used by
TOUTATIS is described in the figure 2.

 
 Figure 2: Representation of the TOUTATIS cycle (GS = 3
Gauss-Seidel relaxations, R = Restriction, P =
Prolongation).

 4  ADAPTIVE MESH REFINEMENT
 In order to take into account neighbour bunches, the

longitudinal dimension of the grid is set to βλ and a
longitudinal periodicity is imposed in the relaxation
process. The main drawback of this technique occurs
during acceleration of the bunch. As the phase spread
decreases, the resolution on the bunch decreases also.

 To simply solve this problem, TOUTATIS uses a
second mesh which is embedded in the main grid (Fig. 4).
Its dimensions are function of bunch rms sizes while the
big grid dimensions are function of the vane geometry.

 
 Figure 4: Scheme of the Adaptive Mesh Refinement

 5  TESTS

5.1  Theoretical comparison

 The multigrid solver has been validated with a gaussian
cylindrical beam. Figure 3 shows the radial component of
the electrical field calculated with different resolutions for
the finest grid (653, 333, 173, 93) compared to the
theoretical value.

 

 
 Figure 3: Theoretical field and computed fields for
different resolutions of the finest grid (653, 333, 173, 93).
 

 This test shows the good agreement achieved with this
solver. The maximum discrepancy is less than 0.7 % for
the 653 and 333 cases. It is also interesting to notice that
the low resolution cases give a reasonable agreement
which allows very fast calculations (15 minutes).

5.2  Experimental comparison

 The reference [1] describes in details an experimental
confrontation between TOUTATIS and RFQ2
measurements performed in 1993 at CERN [8]. It is
shown that the discrepancy is in the same region of
measurements errors, around 5 %, while PARMULT
discrepancy is around 15 %.
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 6  SIMULATION OF COUPLING GAPS
 The main advantage of the numerical approach of

TOUTATIS is the possibility to simulate any vanes
geometry. For example, the effect of discontinuity as the
coupling gaps for segmented RFQs can be estimated. This
is a very important point, especially when the geometry of
these gaps (Fig. 5) is slightly complicated in order to
reduce the sparking probability [4,9].

 
 Figure 5: Vane profile with coupling gap. An elliptical
curvature avoids a field enhancement without impairing
the focusing forces significantly.

 
 To minimize the coupling gap perturbation, Lloyd

Young, from LANL, has put into practice a new technique
consisting in locating the gap at the longitudinal position
crossed by the synchronous particle when the RF power is
equal to zero [10]. Applying this concept in a particular
cell, this gives the law:

 
π
φ

= s
cLz    (Eq. 5)

 for the position gap center; with Lc, the cell length; φs,
the synchronous phase. The figure 6 shows a typical
TOUTATIS result for the electrical potential calculation
in the horizontal plane without and with a coupling gap.
 

  
 Figure 6: Equipotentials in the horizontal plane without
and with coupling gap.

 
 In favor of the IPHI project, several configurations for

coupling gaps have been tested especially by varying gap
width and location [11]. The table 1 compiles the
significant results for the three gaps of the IPHI design.
 

 Table 1: Main results about gaps effects (* ≡ gaps @
exactly 2, 4, 6 m; + ≡ gaps @ Young’s location).
 
Gap width (mm) ∅ 3.5* 3.5+ 2.2* 2.2+

 in,tout,t
~/~ εε  (%)  4  28  12  12  8

 Transmission (%)  97  95  96  97  97

 This study shows that:
• The coupling gaps must be included in beam

dynamics simulations to avoid too optimistic
forecasts (emittances, losses, activation).

• The gap width has to be set as small as possible and
the center located at Young’s positions.

 7  CONCLUSION
 A new RFQ code for beam simulation, TOUTATIS,

has been written with goals of cross-checking the results
of other codes and reaching a more reliable description of
the electrical fields in the linac. Its numerical approach
allows to simulate accurately, for any vanes geometry, the
whole beam zone contrary to PARMTEQM which is
limited by cylindrical harmonics [12,13]. The multigrid
solver permits fast calculations compared to LIDOS
which uses Chebyshev acceleration [5]. An adaptive mesh
refinement is implemented in order to describe as well as
possible the charges distribution without impairing the
computation time.

TOUTATIS has been also written to be a friendly user
code (multiplatforms, PARMTEQM input file can be
directly used as TOUTATIS input file).
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