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Abstract

We present the applications of variational–wavelet ap-
proach for computing multiresolution/multiscale represen-
tation for solution of some approximations of Vlasov-
Maxwell-Poisson equations.

1 INTRODUCTION

In this paper we consider the applications of a new nu-
merical-analytical technique which is based on the meth-
ods of local nonlinear harmonic analysis or wavelet analy-
sis to the nonlinear beam/acceleratorphysics problems de-
scribed by some forms of Vlasov-Maxwell-Poisson equa-
tions. Such approach may be useful in all models in which
it is possible and reasonable to reduce all complicated prob-
lems related with statistical distributions to the problems
described by systems of nonlinear ordinary/partialdifferen-
tial equations with or without some (functional)constraints.
Wavelet analysis is a relatively novel set of mathemati-
cal methods, which gives us the possibility to work with
well-localized bases in functional spaces and gives for the
general type of operators (differential, integral, pseudodif-
ferential) in such bases the maximum sparse forms. Our
approach in this paper is based on the variational-wavelet
approach from [1]-[10], which allows us to consider poly-
nomial and rational type of nonlinearities. The solution has
the followingmultiscale/multiresolutiondecomposition via
nonlinear high-localized eigenmodes

u(t, x) =
∑
k∈Z2

Uk(x)V k(t), (1)

V k(t) = V k,slowN (t) +
∑
i≥N

V ki (ω1
i t), ω1

i ∼ 2i

Uk(x) = Uk,slowM (x) +
∑
j≥M

Ukj (ω2
jx), ω2

j ∼ 2j

which corresponds to the full multiresolution expansion in
all time/space scales.

Formula (1) gives us expansion into the slow partuslowN,M

and fast oscillating parts for arbitrary N, M. So, we may
move from coarse scales of resolution to the finest one
for obtaining more detailed information about our dynam-
ical process. The first term in the RHS of formulae (1)
corresponds on the global level of function space decom-
position to resolution space and the second one to detail
space. In this way we give contribution to our full solu-
tion from each scale of resolution or each time/space scale
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or from eachnonlinear eigenmode (Fig.1). The same is
correct for the contribution to power spectral density (en-
ergy spectrum): we can take into account contributions
from each level/scale of resolution. Starting in part 2 from
Vlasov-Maxwell-Poisson equations we consider in part 3
the approach based on variational-wavelet formulation in
the bases of compactly supported wavelets or nonlinear
eigenmodes.
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Figure 1: Multiscale/eigenmode decomposition.

2 VLASOV-MAXWELL-POISSON
EQUATIONS

Analysis based on the non-linear Vlasov-Maxwell-Poisson
equations leds to more clear understanding of the collecti-
ve effects and nonlinear beam dynamics of high inten-
sity beam propagation in periodic-focusing and uniform-
focusing transport systems. We consider the following
form of equations ([11] for setup and designation):{ ∂

∂s
+ px

∂

∂x
+ py

∂

∂y
−
[
kx(s)x +

∂ψ

∂x

] ∂

∂px
−[

ky(s)y +
∂ψ

∂y

] ∂

∂py

}
fb(x, y, px, py, s) = 0, (2)( ∂2

∂x2
+

∂2

∂y2

)
ψ = −2πKb

Nb

∫
dpxdpyfb, (3)∫

dxdydpxdpyfb = Nb (4)

The corresponding Hamiltonian for transverse single-par-
ticle motion is given by

H(x, y, px, py, s) =
1
2

(p2
x + p2

y) +
1
2

[kx(s)x2 (5)

+ky(s)y2] +H1(x, y, px, py, s) + ψ(x, y, s),

whereH1 is nonlinear (polynomial/rational) part of the full
Hamiltonian. In case of Vlasov-Maxwell-Poisson system
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we may transform (2) into invariant form

∂fb
∂s

+ [f,H] = 0. (6)

3 VARIATIONAL MULTISCALE
REPRESENTATION

The first main part of our consideration is some variational
approach, which reduces initial problem to the problem
of solution of functional equations at the first stage and
some algebraical problems at the second stage. Multires-
olution expansion is the second main part of our construc-
tion. Because affine group of translation and dilations is
inside the approach, this method resembles the action of a
microscope. We have contribution to final result from each
scale of resolution from the whole infinite scale of increas-
ing closed subspacesVj: ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂
V2 ⊂ .... The solution is parameterized by solutions of
two reduced algebraical problems, one is nonlinear and the
second are some linear problems, which are obtained by the
method of Connection Coefficients (CC)[12]. We use com-
pactly supported wavelet basis. Let our wavelet expansion
be

f(x) =
∑
`∈Z

c`ϕ`(x) +
∞∑
j=0

∑
k∈Z

cjkψjk(x) (7)

If cjk = 0 for j ≥ J , thenf(x) has an alternative ex-
pansion in terms of dilated scaling functions onlyf(x) =∑
`∈Z

cJ`ϕJ`(x). This is a finite wavelet expansion, it can

be written solely in terms of translated scaling functions.
To solve our second associated linear problem we need
to evaluate derivatives off(x) in terms ofϕ(x). Let be
ϕn` = dnϕ`(x)/dxn. We consider computation of the
wavelet - Galerkin integrals. Letfd(x) be d-derivative of
function f(x), then we havefd(x) =

∑
` clϕ

d
` (x), and

valuesϕd` (x) can be expanded in terms ofϕ(x)

ϕd` (x) =
∑
m

λmϕm(x), (8)

λm =

∞∫
−∞

ϕd` (x)ϕm(x)dx,

whereλm are wavelet-Galerkin integrals. The coefficients
λm are 2-term connection coefficients. In general we need
to find (di ≥ 0)

Λd1d2...dn
`1`2...`n

=

∞∫
−∞

∏
ϕdi`i (x)dx (9)

For quadratic nonlinearities we need to evaluate two and
three connection coefficients

Λd1d2
` =

∫ ∞
−∞

ϕd1(x)ϕd2
` (x)dx, (10)

Λd1d2d3 =

∞∫
−∞

ϕd1(x)ϕd2
` (x)ϕd3

m (x)dx

According to CC method [12] we use the next construc-
tion. WhenN in scaling equation is a finite even positive
integer the functionϕ(x) has compact support contained in
[0, N−1]. For a fixed triple(d1, d2, d3) only someΛd1d2d3

`m

are nonzero:2 − N ≤ ` ≤ N − 2, 2 − N ≤ m ≤
N−2, |`−m| ≤ N −2. There areM = 3N2−9N+7
such pairs(`,m). Let Λd1d2d3 be an M-vector, whose com-
ponents are numbersΛd1d2d3

`m . Then we have the first re-
duced algebraical system :Λ satisfy the system of equa-
tions(d = d1 + d2 + d3)

AΛd1d2d3 = 21−dΛd1d2d3 , (11)

A`,m;q,r =
∑
p

apaq−2`+par−2m+p

By moment equations we have created a system ofM+d+
1 equations inM unknowns. It has rankM and we can ob-
tain unique solution by combination of LU decomposition
and QR algorithm. The second reduced algebraical system
gives us the 2-term connection coefficients (d = d1 + d2):

AΛd1d2 = 21−dΛd1d2 , A`,q =
∑
p

apaq−2`+p (12)

For nonquadratic case we have analogously additional lin-
ear problems for objects (9). Solving these linear problems
we obtain the coefficients of reduced nonlinear algebraical
system and after that we obtain the coefficients of wavelet
expansion (7). As a result we obtained the explicit time so-
lution of our problem in the base of compactly supported
wavelets. Also in our case we need to consider the exten-
sion of this approach to the case of any type of variable
coefficients (periodic, regular or singular). We can pro-
duce such approach if we add in our construction additional
refinement equation, which encoded all information about
variable coefficients [13]. So, we need to compute only
additional integrals of the form∫

D

bij(t)(ϕ1)d1(2mt− k1)(ϕ2)d2(2mt− k2)dx, (13)

wherebij(t) are arbitrary functions of time and trial func-
tionsϕ1, ϕ2 satisfy the refinement equations:

ϕi(t) =
∑
k∈Z

aikϕi(2t− k) (14)

If we consider all computations in the class of compactly
supported wavelets then only a finite number of coefficients
do not vanish. To approximate the non-constant coeffi-
cients, we need choose a different refinable functionϕ3

along with some local approximation scheme

(B`f)(x) :=
∑
α∈Z

F`,k(f)ϕ3(2`t− k), (15)

whereF`,k are suitable functionals supported in a small
neighborhood of2−`k and then replacebij in (13) by
B`bij(t). In particular case one can take a characteristic
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function and can thus approximate non-smooth coefficients
locally. To guarantee sufficient accuracy of the resulting
approximation to (13) it is important to have the flexibility
of choosingϕ3 different fromϕ1, ϕ2. In the case when D
is some domain, we can write

bij(t) |D=
∑

0≤k≤2`

bij(t)χD(2`t− k), (16)

whereχD is characteristic function of D. So, if we take
ϕ4 = χD, which is again a refinable function, then the
problem of computation of (13) is reduced to the problem
of calculation of integral

H(k1, k2, k3, k4) = H(k) =
∫

Rs

ϕ4(2jt− k1) ·

ϕ3(2`t − k2)ϕd1
1 (2rt − k3)ϕd2

2 (2st− k4)dx (17)

The key point is that these integrals also satisfy some sort
of refinement equation [13]:

2−|µ|H(k) =
∑
`∈Z

b2k−`H(`), µ = d1 + d2. (18)

This equation can be interpreted as the problem of comput-
ing an eigenvector. Thus, the problem of extension of the
case of variable coefficients are reduced to the same stan-
dard algebraical problem as in case of constant coefficients.
So, the general scheme is the same one and we have only
one more additional linear algebraic problem by which we
can parameterize the solutions of corresponding problem in
the same way.

So, we use wavelet bases with their good space/time lo-
calization properties to explore the dynamics of coherent
structures in spatially-extended stochastic systems. After
some ansatzes, reductions and constructions we give for
(2)-(6) the following representation for solutions

u(z, s) =
∑
k

∑
`

Uk` (z)V k` (s) =
∑

Uk` V
k
` , (19)

whereV k` (s), Uk` (z) are both wavelets or nonlinear high-
localized eigenmodes andz = (x, y).

Resulting multiresolution/multiscale representation for
solutions of (2)-(6) in the high-localized bases is demon-
strated on Fig.2.
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Figure 2: The solution via multiscales.
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