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Abstract

Langevin simulation provides an effective way to study col-
lisional effects in beams by reducing the six-dimensional
Fokker-Planck equation to a group of stochastic ordinary
differential equations. These resulting equations usually
have multiplicative noise since the diffusion coefficients in
these equations are functions of position and time. Con-
ventional algorithms, e.g. Euler and Heun, give only first
order convergence of moments in a finite time interval. In
this paper, a stochastic leap-frog algorithm for the numeri-
cal integration of Langevin stochastic differential equations
with multiplicative noise is proposed and tested. The al-
gorithm has a second-order convergence of moments in a
finite time interval and requires the sampling of only one
uniformly distributed random variable per time step. As
an example, we apply the new algorithm to the study of a
mechanical oscillator with multiplicative noise.

1 INTRODUCTION

Multiple Coulomb scattering of charged particles, also
called intra-beam scattering, has important applications in
accelerator operation. It causes a diffusion process of par-
ticles and leads to an increase of beam size and emittance.
This results in a fast decay of the quality of beam and re-
duces the beam lifetime when the size of the beam is large
enough to hit the aperture [1].

An appropriate way to study the multiple Coulomb scat-
tering is to solve the Fokker-Planck equations for the dis-
tribution function in six-dimensional phase space. Never-
theless, the Fokker-Planck equations are very expensive to
solve numerically even for dynamical systems possessing
only a very modest number of degrees of freedom. Trunca-
tion schemes or closures have had some success in extract-
ing the behavior of low-order moments, but the systematics
of these approximations remains to be elucidated. On the
other hand, the Fokker-Planck equations can be solved us-
ing an equivalent Langevin simulation, which reduces the
six-dimensional partial differential equations into a group
of stochastic ordinary differential equations. Compared to
the Fokker-Planck equation, stochastic differential equa-
tions are not difficult to solve, and with the advent of mod-
ern supercomputers, it is possible to run very large num-
bers of realizations in order to compute low-order moments
accurately. In general, the noise in these stochastic ordi-
nary differential equations are multiplicative instead of ad-
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ditive since the dynamic friction coefficient and diffusion
coefficient in the Fokker-Planck equations depend on the
spatial position. An effective numerical algorithm to inte-
grate the stochastic differential equation with multiplicative
noise will significantly improve the efficiency of large scale
Langevin simulation.

The stochastic leap-frog algorithms in the Langevin sim-
ulation are given in Section II. Numerical tests of this algo-
rithms is presented in Section III. A physical application
of the algorithm to the multiplicative-noise mechanic os-
cillator is given in Section IV. The conclusions are drawn
in Section V.

2 STOCHASTIC LEAP-FROG
ALGORITHM

In the Langevin simulation, the stochastic particle equa-
tions of motion that follow from the Fokker-Planck equa-
tion are (Cf. Ref. [2])

r
0 = v; (1)

v
0 =

F

m
� �v+

p
D�(t); (2)

whereF is the force including both the external force and
the self-generated mean field space charge force,m is the
mass of particle,� is friction coefficient,D is the diffusion
coefficient, and�(t) are Gaussian random variables with

h�i(t)i = 0; (3)

h�i(t)�i(t
0)i = �(t � t0): (4)

In the case not too far from thermodynamic equilibrium,
the friction coefficient is given as

� =
4
p
�n(r)Z4e4 ln (�)

3m2(T (r)=m)3=2
(5)

and the diffusion coefficientD isD = �kT=m [3]. Here,
n(r) is the density of particle,T (r) is the temperature of of
beam,Z is the charge number of particle,e is the charge of
electron,� is the Coulomb logarithm, andk is the Boltz-
mann constant. For the above case, noise terms enter only
in the dynamical equations for the particle momenta. In
Eqn. (6) below, the indices are single-particle phase-space
coordinate indices; the convention used here is that the odd
indices correspond to momenta, and the even indices to the
spatial coordinate. In the case of three dimensions, the dy-
namical equations then take the general form:

_x1 = F1(x1; x2; x3; x4; x5; x6) + �11(x2; x4; x6)�1(t)

_x2 = F2(x1)
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_x3 = F3(x1; x2; x3; x4; x5; x6) + �33(x2; x4; x6)�3(t)

_x4 = F4(x3)

_x5 = F5(x1; x2; x3; x4; x5; x6) + �55(x2; x4; x6)�5(t)

_x6 = F6(x5) (6)

In the dynamical equations for the momenta, the first term
on the right hand side is a systematic drift term which in-
cludes the effects due to external forces and damping. The
second term is stochastic in nature and describes a noise
force which, in general, is a function of position. The noise
�(t) is first assumed to be Gaussian and white as defined
by Eqns. (3)-(4). The stochastic leap-frog algorithm for
Eqns. (6) is written as

�xi(h) = �Di(h) + �Si(h) (7)

The deterministic contribution�Di(h) can be obtained us-
ing the deterministic leap-frog algorithm. Here, the deter-
ministic contribution�Di(h) and the stochastic contribution
�Si(h) of the above recursion formula for one-step integra-
tion are found to be

�Di(h) = �xi(0) + hFi(�x
�
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2
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4
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5
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6
);
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2
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fi = 2; 4; 6g
�Si(h) = �ii

p
hWi(h) +

1

2
Fi;k�kkh

3=2 ~Wi(h)

+
1

2
�ii;jFjh

3=2 ~Wi(h)

+
1

4
Fi;kl�kk�llh

2 ~Wi(h) ~Wi(h);

fi = 1; 3; 5; j = 2; 4; 6; k; l = 1; 3; 5g
�Si(h) =

1p
3
Fi;j�jjh

3=2 ~Wj(h)

+
1

4
Fi;jj�

2

jjh
2 ~Wj(h) ~Wj(h)

fi = 2; 4; 6; j = 1; 3; 5g
�x�i = �xi(0) +

1

2
hFi(�x1; �x2; �x3; �x4; �x5; �x6)

fi = 1; 2; 3; 4; 5;6g (8)

where ~Wi(h) is a series of random numbers with the mo-
ments

h ~Wi(h)i = h( ~Wi(h))
3i = h( ~Wi(h))

5i = 0 (9)

h( ~Wi(h))
2i = 1; h( ~Wi(h))

4i = 3 (10)

This can not only be achieved by choosing true Gaussian
random numbers, but also by using the sequence of random
numbers following:

~Wi(h) =

8<
:

�p3; R < 1=6
0; 1=6 � R < 5=6p
3; 5=6 � R

(11)
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Figure 1: Zero damping convergence test.hx2(t)i at t = 6
as a function of step size with white Gaussian noise. Solid
lines represent quadratic fits to the data points (diamonds).

whereR is a uniformly distributed random number on the
interval (0,1). This trick significantly reduces the computa-
tional cost in generating random numbers.

3 NUMERICAL TESTS

The above algorithm was tested on a one-dimensional
stochastic harmonic oscillator with a simple form of the
multiplicative noise. The equations of motion were

_p = F1(p; x) + �(x)�(t)

_x = p (12)

whereF1(p; x) = �p � �2x and�(x) = ��x. The
stochastic leapfrog integrator for this case is given by
Eqns. (8) (white noise) with the substitutionsx1 = p,
x2 = x.

As a first test, we computedhx2i as a function of time-
step size. To begin, we took the case of zero damping con-
stant ( = 0), wherehx2i can be determined analytically.
The curve in Fig. 1 showshx2i at t = 6:0 as a function
of time-step size with white Gaussian noise. Here, the pa-
rameters� and� are set to1:0 and0:1. The analytically
determined value ofhx2i at t = 6:0 is 2:095222. The
quadratic convergence of the stochastic leap-frog algorithm
is clearly seen in the numerical results. We also verified
that the quadratic convergence is present for nonzero damp-
ing ( = 0:1). At t = 12:0, and with all other parameters
as above, the convergence ofhx2i as a function of time step
is shown by the curve in Fig. 2. As a comparison against
the conventional Heun’s algorithm [5], we computedhx2i
as a function oft using100; 000 numerical realizations for
a particle starting from(0:0; 1:5) in the(x; p) phase space.
The results along with the analytical solution and a numer-
ical solution using Heun’s algorithm are given in Fig. 3.
Parameters used wereh = 0:1, � = 1:0, and� = 0:1. The
advantage in accuracy of the stochastic leap-frog algorithm
over Heun’s algorithm is clearly displayed, both in terms
of error amplitude and lack of a systematic drift.
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Figure 2: Finite damping ( = 0:1) convergence test.
hx2(t)i at t = 12 as a function of step size with white
Gaussian noise. Solid lines represent quadratic fits to the
data points (diamonds).

-2

0

4

8

12

0 100 200 300 400 500
t

Exact

Error: Heun

Error: Leapfrog

<

<

X
2

Figure 3: Comparing stochastic leap-frog and the Heun al-
gorithm:hx2(t)i as a function oft. Errors are given relative
to the exact solution.

4 APPLICATION

In this section, we apply our algorithm to studying the ap-
proach to thermal equilibrium of an oscillator with multi-
plicative noise. The governing equations are:

_p = �!2
0
x� �x2p �

p
2Dx�2(t)

_x = p (13)

where the diffusion coefficientsD = �kT , � is the cou-
pling constant, and!0 is the oscillator angular frequency
without damping. In Fig. 4, we display the time evolu-
tion of the average energy with multiplicative noise from
the simulations and the approximate analytical calcula-
tions [6]. The analytic approximation resulting from the
application of the energy-envelope method is seen to be in
reasonable agreement with the numerical simulations for
kT = 4:5. The slightly higher equilibrium rate from the
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Figure 4: Temporal evolution of the scaled average energy
hE(t)iwith multiplicativenoise from numerical simulation
and analytical approximation.

analytical calculation is due to the truncation in the energy
envelope equation using thehE2(t)i � 2hE(t)i2 relation
which yields an upper bound on the rate of equilibration of
the average energy [6].

5 CONCLUSIONS

We have presented a stochastic leap-frog algorithm for
Langevin simulation with multiplicative noise. This
method has the advantages of retaining the symplectic
property in the deterministic limit, ease of implementa-
tion, and second-order convergence of moments for mul-
tiplicative noise. Sampling a uniform distribution instead
of a Gaussian distribution helps to significantly reduce the
computational cost. A comparison with the conventional
Heun’s algorithm highlights the gain in accuracy due to the
new method. Finally, we have applied the stochastic leap-
frog algorithm to a nonlinear mechanic-oscillator system to
investigate the the nature of the relaxation process.
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