THPR
-
Thursday Poster Session: THPR
23 May 2024, 16:00 -
18:00
THPR01
ELISA: a compact linear accelerator for societal applications
3477
The experience gained at CERN by the R&D for LINAC4 has been exported to medical and societal applications. With an innovative design of the Radio Frequecy Quadrupole (RFQ) at high frequencies, it is possible to build very com- pact structures, reproducible in industry and with the po- tential of full portability. ELISA (Experimental LInac for Surface Analysis) is a linear proton accelerator installed in the Science Gateway exhibition at CERN since October 2023. With a footprint of only 2×1 square meters, ELISA consists of an ion source, a one-meter-long RFQ working at 750 MHz and an analysing line dedicated to Particle Induced X-ray Emission (PIXE). The system can accelerate a proton beam (extracted from the source at 20 keV) up to an energy of 2 MeV. In this paper the ELISA source commissioning is presented, with a multi-parameter optimization performed both computationally and experimentally and the ultimate optimization of beam emittance at 20 keV, finally achieving the required brilliance of the source. High energy beam com- missioning will also be discussed, including RFQ voltage scan to study the transmission and characterize the ELISA RFQ.
Paper: THPR01
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR01
About: Received: 12 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR02
Revised error sensitivity study for the ESS proton linac
3481
The normal-conducting injector of the superconducting proton linac of the European Spallation Source (ESS) was commissioned in 2023. Commissioning of the superconducting linac is planned by end of 2024, followed by first beam on the spallation target in 2025. One of the prominent challenges in commissioning and operation of high power accelerators, such as the linac of the ESS, is to minimize beam loss to protect its components from excessive activation and potential damage. Sensitivity studies looking at various types of errors were conducted in the past during the design phase for defining requirements and tolerances. With the commissioning of the full linac approaching, a revised error sensitivity study was carried out, and the result is presented in this paper. The aim of the revised study is to better understand the relation between potential error sources and loss patterns.
Paper: THPR02
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR02
About: Received: 20 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Power ramp up and minimization of beam losses at the facility for Rare Isotope Beams
The Facility for Rare Isotopes Beams started operation nearly two years ago and ramped up beam power by a factor of 10 from 1 kW to 10 kW. The main contributions to the beam losses are due to the beam halo generated in the ion source and low energy beam transport, the effect of the stripper, and multiple charge state acceleration. The linac tuning procedure includes setting both RF cavity fields, phases, and beam optical devices based on pre-calculated values followed by Courant-Snyder parameters matching based on profile measurements in several linac sections. The simultaneous acceleration of multiple charge states of heavy ion beams is routinely used to minimize the beam power deposition on the charge selector slits after the stripper and provide higher power on the target for the heaviest ions with limited intensity from the ion source. Recently, we added acceleration of dual charge state beams, which is a significant challenge due to the absence of the central charge state but highly desirable for light ions (Z<50) to reduce controlled beam losses on the charge selector. The optics at the Beam Delivery System are optimized to simultaneously focus all charge states into the required phase space on the target. The transverse and longitudinal envelop mapping is applied for each charge state to confirm low-loss linac tuning. The uncontrolled beam losses for any ion species from neon to platinum at the entire linac are well below 1e-4.
THPR05
The LOEWE-3 RFQ project
3485
The IAP (Institute for Applied Physics) of the Goethe University Frankfurt has a long experience in the development of 4-Rod RFQs. In the course of a project funded by the HessenAgentur as part of LOEWE funding line 3, the basic design of the 4-rod RFQs is now to be further developed. The aim is to investigate whether an improvement in Q-Value and vacuum can be achieved through new production and construction methods, as well as through fundamental adjustments to the basic geometric structure of the 4-Rod RFQ design. The project is divided into two phases. In the first phase, a simulation model is created in which all necessary changes that affect the RF characteristics of the RFQ are analysed. Based on these results, a demonstrator will then be built on which the innovations can be tested and any improvements examined. This article presents the basic ideas behind the project and the current planning status. This paper shows the basic ideas of the project as well as the current state of planning.
Paper: THPR05
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR05
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR06
Update on automated RF-conditioning utilizing machine learning
3488
The conditioning of room temperature cavities is an exhausting process. To prevent damage to the cavity and auxiliary equipment, this potentially long process needs constant supervision or extensive safety precautions. Additionally, the unpredictability of every new conditioning makes the development of effective classical algorithms difficult. To reduce the workload for everyone involved and to increase the efficiency of the conditioning process, it was decided to develop a machine learning algorithm with the goal of fully automated conditioning in mind. To reach this goal, it is planned to train the model on the data of already conducted conditionings of room temperature cavities, a virtual cavity and several more conditionings to be conducted soon. In this paper, the status of development, problems and challenges as well as the planned future progression shall be summarized.
Paper: THPR06
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR06
About: Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR07
Preparation for the conditioning of the MYRRHA CH-Cavities at IAP
3491
The Institute for Applied Physics (IAP) installed a permanent test setup for up to \SI{60}{\kilo\watt} of RF power in cw mode for conditioning. The goal is to establish a time efficient test procedure for the future MYRRHA CH-cavities. Three test stands were designed to accommodate up to three cavities simultaneously. All stations are curently tested via the \SI{175}{\mega\hertz} MAX RFQ prototype at IAP with the new test setup. Vacuum, Low-level-, and high-power measurements have been successfully performed.
Paper: THPR07
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR07
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPR08
Improvements to 4-rod RFQs with additive manufacturing processes
3494
The institute of applied physics (IAP), university of Frankfurt, has been working for years on the development of increasingly powerful 4-Rod RFQ accelerators for hadron acceleration. The need for such accelerators has increased significantly in the recent past, as accelerator-driven neutron sources are becoming increasingly important following the closure of various test reactors. High beam currents, particle energies and operational stability are often required from those LINACs. In order to meet these requirements, the copper structure of the RFQ is to be manufactured using a new type of pure copper 3D printing in order to be able to introduce optimized cooling channels inside the copper parts. Comprehensive multiphysics simulations with ansys, cst and autodesk CFD will first be carried out to evaluate the operational stability and performance. In addition, it will be clarified whether the printed copper fulfills the necessary vacuum and conductivity requirements after CNC processing, or whether galvanic copper plating should be carried out.
Paper: THPR08
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR08
About: Received: 15 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPR09
High-power RF conditioning and 700 keV beam commissioning of the revised RFQ for the Frankfurt Neutron Source
3497
We report the successful high power RF conditioning of the revised 175 MHz FRANZ RFQ up to 80 kW CW, as well as successful beam commissioning up to 700 keV in pulsed operation. After a revision of the RFQ electrodes, the RFQ accelerates protons from 60 keV to 700 keV. The Frankfurt Neutron Source FRANZ will be a compact accelerator driven neutron source utilizing the 7Li(p,n)7Be reaction with a 2 MeV proton beam.
Paper: THPR09
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR09
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR10
RF conditioning of an IH-DTL cavity made using additive manufacturing
3501
Additive manufacturing ("AM") has become a powerful tool for rapid prototyping and manufacturing of complex geometries. A 433 MHz IH-DTL cavity has been constructed to act as a proof of concept for direct additive manufacturing of linac components. In this case, the internal drift tube structure has been produced from 1.4404 stainless steel, as well as pure copper using AM. We present the most recent results of vacuum, low level RF, as well as RF conditioning of the cavity.
Paper: THPR10
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR10
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR12
Simultaneous acceleration of multiple beams in novel LANSCE front end
3505
We present the 100 MeV injector design for the LANSCE Accelerator Facility, which is designed to replace the existing 750-keV Cockcroft-Walton-columns-based injector. This new Front End includes two independent low-energy transports for H+ and H- beams merging at the entrance of a single RFQ, with the subsequent acceleration of particles in the new Drift Tube Linac. The challenge of this design is associated with the necessity of simultaneous acceleration of protons and H- ions with multiple beam flavors in a single RFQ and DTL. The LANSCE operation regime provides simultaneous delivery of beams to five experimental areas, with a forecasted increase in the number of targets in the future. Each beam is characterized by a unique time structure, pulse length, emittance, and charge per bunch. The paper presents the details of this design and injector parameters.
Paper: THPR12
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR12
About: Received: 11 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR13
Conditioning of rod-style RFQ in support of LANSCE front-end upgrade
3508
The Los Alamos Neutron Science Center (LANSCE) front-end injection scheme requires an upgrade to a Radio-Frequency Quadrupole (RFQ) in order to replace the obsolete Cockroft-Waltons used in present operation. A test stand using a rod-style RFQ is under development in support of this upgrade, and conditioning of the RFQ to the expected peak and average power levels was completed to ensure its feasibility. The RFQ conditioning also revealed thermal issues with the RF power coupler and issues in managing the power reflected from the RFQ. These issues and their mitigation will be discussed in light of the capability of the test stand, and future plans will also be discussed.
Paper: THPR13
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR13
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR14
Importance of quadrupole magnet fringing fields in low energy beam transport: example in the LIPAc 5 MeV D+ beamline
3512
The hard-edge model for a quad field distribution is widely assumed in particle simulations at the early design phase of beam transport lines or circular accelerator rings to quickly evaluate their beam optics. However, the model assuming a rectangular field distribution even with an effective length is not an appropriate approximation for low-energy beams (<50 MeV). This approximation is known not to necessarily lead to the correct beam optics. The evaluated beam size based on this hard-edge model has tended to be different from measured ones and simulation results employing the exact field distribution fully implementing fringing fields. We try to study the magnetic field gradients of single quads installed in the Linear IFMIF Prototype Accelerator beamline. We define a characteristic magnetic field gradient gc [T/m] of the quad, which is determined only by the distance relations for the target quad, steerer, and BPM. Simulation results, where the hard-edge and file-map models are assumed, are compared with those measured using a 5 MeV deuteron beam. The details of the comparison of the results and the effect of the fringe fields on the beam optics are discussed in this paper.
Paper: THPR14
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR14
About: Received: 14 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR15
Simple estimate, detailed computer simulation and measurement of the transverse kick in the SLAC accelerating structure
3516
We discuss the result of calculation and measurement of the transverse kick in the SLAC accelerating section in a single bunch and multi-bunch regimes. We present a simple estimate, which can be used in practical situations.
Paper: THPR15
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR15
About: Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR16
Design of a spin rotator for the ISIS Super-MuSR beamline
3520
The spin rotators (SR) are DC electromagnetic devices that produce a homogeneous magnetic field to rotate the spin of the muons in flight, which is counterbalanced by a matched perpendicular electric field to avoid the bending of the muon beam trajectory. Two identical SR will be used in the new Super-MuSR beamline to rotate the muon spin by up to 34º per device relative to the beam direction, enabling higher transverse field muon measurements and other experiments not currently possible in the present ISIS MuSR beamline. The fundamental electromagnetic (EM) design of the SR is presented in this paper, both for the magnet and the high voltage vessel. The optimization of the electric and magnetic fields shape and strength is presented including fundamental hand calculations, 2D/3D models and particle tracking simulations. The high voltage feedthroughs and the electrode insulating supports were thoroughly designed to reduce the breakdown probability. A sensitivity study was also developed to estimate the manufacturing tolerances, but it is not presented in this paper.
Paper: THPR16
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR16
About: Received: 30 Apr 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR17
Dimensional and thermal design of the electrostatic chopper for the new ISIS MEBT
3524
The electrostatic chopper for the new ISIS MEBT is a fast deflecting device to create gaps in the beam coming out of the RFQ, which will improve the trapping efficiency when injecting the beam into the ISIS synchrotron. The electromagnetic design of the chopper was initially developed to define its functional specifications, shape and dimensions, and it was presented elsewhere. A dimensional sensitivity study was developed to estimate the maximum acceptable thermal loads due to the beam loss (used later in the thermal model) and to ensure that the electric field shape and strength were still valid. Dimensional tolerances were defined based on the sensitivity study. Thermal calculations and models were required to ensure that the electrodes were properly cooled for the expected beam loss in the diverse working and failure situations, and to ensure that the hot beam dump inside the chopper was not indirectly overheating the electrodes. The mechanical design and manufacturing were carried out according to the results from the previous analyses, and the details are presented elsewhere.
Paper: THPR17
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR17
About: Received: 30 Apr 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
THPR18
Mechanical design of a QWR cavity for the new ISIS MEBT
3528
The Quarter Wave Resonator (QWR) is a longitudinal bunching cavity for the MEBT section of the Pre-injector Upgrade project at ISIS. Four cavities are required with at least one functional spare. The production of a full scale prototype is discussed here. Three main manufacturing challenges were encountered as follows: the tight manufacturing tolerances of the stainless steel tank, most noticeably the 80 µm tolerance along the length of the 370 mm bore; the 50 µm ± 10 µm copper plating layer on the inside of the complex geometry cavity; and the brazing of the copper lid to a long (280 mm) stem with the use of a jig, to achieve a tight precision in the length inside the cavity. Trials for all these have been conducted before being accurately assembled with a CMM, with lessons learnt and the final solutions presented.
Paper: THPR18
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR18
About: Received: 02 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR19
Practical design and manufacturing of the new ISIS MEBT chopper
3532
The electrostatic chopper for the new ISIS MEBT is a fast deflecting device which will create gaps in the beam coming out of the RFQ, which will improve the trapping efficiency when injecting the beam into the ISIS synchrotron. The fundamental design (including electromagnetic and thermal calculations, and sensitivity studies) are presented elsewhere. The practical aspects of the mechanical design and the assembly of the prototype chopper are presented here. This includes how challenges were resolved, such as insufficient transmission from the fiber thermocouples through the feedthroughs, ease of life design features, such as the use of o-ring screws, tests performed to feed into the analytical design and the promising progress made to date.
Paper: THPR19
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR19
About: Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR20
Design of IH-DTL with PMQ focusing for medical RI production
3536
In recent years, plans for cancer treatment using medical RI have been progressing worldwide. The stable supply is difficult due to the aging of small nuclear reactors and dependence on imports from abroad. Manufacturing using accelerators could realize a stable supply in Japan. To give an example of Astatine-211, the production of an alpha-ray drug requires helium nuclei of 7 MeV/u or more. This time, we are designing an accelerator system with the aim of accelerating helium ions with a peak current value of 30mA and a duty cycle of 5%. As an accelerator following the radio-frequency quadrupole linac (RFQ), which accelerates up to 0.6 MeV/u, we are considering the design of an interdigital H-mode drift tube linac (IH-DTL) with permanent magnet quadrupoles (PMQ) in the drift tubes. This accelerator is designed to operate at 200 MHz to use the commercially available semiconductor power supply for saving space and electricity and improving maintainability. In this presentation, we report on the basic design of the IH-DTL with PMQ.
Paper: THPR20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR20
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Magnetic field study for air-cored HTS skeleton cyclotron
Skeleton cyclotron is a compact size air-cored cyclotron with a high temperature superconducting (HTS) coil system. HTS coils’ high critical current density and high heat stability allow magnetic field induction without using any iron core. With this advantage, the magnetic field configuration can be adjusted quickly without consideration for the hysteresis from iron. The purpose of skeleton cyclotron is to change the beam type quickly between proton, deuteron and alpha particle for the needs of various RI production. In order to achieve this goal, the coil system has to be designed with superconductors’ properties taken into account, such as critical current density under strong external magnetic field etc. In this work, the coil system and magnetic field designed for the skeleton cyclotron will be presented. The capability of accelerating various beam type will also be discussed.
THPR22
Status of the Bonn Isochronous Cyclotron
3539
The Bonn Isochronous Cyclotron provides proton, deuteron, alpha and other light ion beams with a charge-to-mass ratio Q/A >= 1/2 and kinetic energies ranging from 7 to 14 MeV per nucleon. The beam is guided through a high-energy beam line (HEBL) to one of five experimental sites. The installation of the irradiation site for high-uniformity radiation hardness tests of Si detectors is now complete. Additionally, a neutron irradiation site will be commissioned soon. Here, a collimated neutron beam, generated by a stripping reaction of the deuteron beam in a carbon target, can be used for irradiation. To provide stable beam with constant optics for these experiments, the power supplies (PS) of all magnets in the HEBL will be replaced. The replacements must meet strict criteria regarding output current's stability, which were derived from measurements of the existing PS. In this spirit, a new corrector magnet PS system, enabling bipolar operation, PS/magnet operation safety/health and power consumption monitoring, is close to commissioning. Additionally, the cyclotron's extraction septum is upgraded to increase operation robustness. Here, an new antiseptum is designed together with a new septum blade holder, which is intended to be additively manufactured with the laser- powder bed fusion technique.
Paper: THPR22
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR22
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR23
Towards mitigation of challenges in development of high power ISOL targets
3542
Worldwide Isotope Separation On-Line (ISOL) facilities face growing demand for producing and extracting high-purity exotic radioactive ion beams to serve nuclear physics, astrophysics and medical applications. In this technique, a particle beam interacts with a suitable target material to produce the desired isotopes through a combination of mechanisms like spallation, fragmentation and fission. TRIUMF has the world's highest-power ISOL facility—ISAC, handling 50 kW of proton beam power. The formidable challenge is to suitably handle the power deposited within the target material and maintain it at 2000°C to optimize the diffusion and effusion of the radioactive products. The intricacy of this design requires precise knowledge of the thermal properties of the target material. Typically, a blend of metallic carbide and graphite, these targets exhibit varying porosity and morphology and have effective thermal properties differing from individual constituent elements. To investigate these properties, a combined numerical-experimental approach is employed. This contribution discusses the optimization of target material sample size using numerical tools and outlines the exploration of thermal properties using an experimental apparatus, the Chamber for Heating Investigations (CHI), developed at TRIUMF.
Paper: THPR23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR23
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR24
Operation status of FRIB wedge systems and plan for power ramp up
3545
At the Facility for Rare Isotope Beams (FRIB) Advanced Rare Isotope Separator (ARIS), wedges are critical devices to achieve rare isotope beam production. Different ions experience a different amount of slowing down by the wedges, which leads to a spatial separation of ion species and enables separation/purification of the secondary isotope beam. As of December 2023, wedge systems have successfully supported FRIB commissioning for over 4,000 hours. Nearly 60 unique wedges were utilized which were implemented during 15 wedge maintenance periods. Material selection, unique wedge designs for beam tuning, secondary wedge design, and diagnostic wedge design developments will be discussed in this paper. The current wedge devices will support primary beam operations to a power level of 65 kW, as evaluated by analysis. Development is underway to achieve a higher power wedge system, capable of 400 kW with full remote handling capacity. Further development plans include a variable wedge system to reduce maintenance time and increase ARIS tuning flexibility.
Paper: THPR24
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR24
About: Received: 08 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR25
Design automation of pre-separator wedges for FRIB advanced rare isotope separator
3549
At the Facility for Rare Isotope Beams (FRIB) unique pre-separator wedges are required for each experiment. As the number of experiments and wedges needed increases every year, reduction in design time and increase in accuracy is critical (FY23 utilized 40 unique wedges, FY24 approx. 60 are planned, and eventually 100 annually). Design automation is achieved by DriveWorksXpress, which reduced design/drafting time by 60%. A form was created with parameters (inputs) listed for each component of the wedge assembly (e.g., wedge height, wedge on axis thickness, wedge angle, etc.). The dimensions and file properties of each component are then able to reference the input values for each parameter from the form and automatically adjust the model and assembly accordingly. Automation on drawing drafting is achieved at the same time. The reduction in design time resulted in completing the design task more efficiently. A reduction in design error and human error was also observed, reducing manufacturing down time and effort required during the release process. These benefits have streamlined the mechanical design process for the pre-separator wedges.
Paper: THPR25
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR25
About: Received: 09 May 2024 — Revised: 23 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
A pulsed Wien filter as a low-energy kicker
In order for the new ATLAS Materials Irradiation Station (AMIS) to take advantage of the future multi-user capabilities at ATLAS, a pulsed kicker is needed to switch 1 MeV/u heavy-ion beams. At this energy and due to space limitations, a pulsed electric kicker is very challenging due to very high voltage requirement, and a magnetic kicker is also very challenging due to the high magnetic field and fast switching requirements. A solution that satisfies the beam switching requirements is a pulsed Wien filter that combines a DC magnetic field with a pulsed electric field, where each provide only half of the kick angle. During the kicked beam pulse, the two fields combine to provide the full kick angle, while the electric field switches sign to cancel the magnetic field during the un-kicked beam pulse. The electromagnetic and beam design for this novel device will be presented and discussed. The device is now under construction and will be tested in the coming year, first offline then online with beam.
THPR28
Upgrade of the PS booster-to-ISOLDE beam transfer line to facilitate an increase in proton driver energy
3552
Following the successful completion of the LHC Injectors Upgrade (LIU) project, since 2021 the Proton Synchrotron (PS) Booster has served the LHC injector chain with protons at an increased kinetic energy of 2 GeV. An upgrade of the ISOLDE (Isotope Separator On-Line DEvice) facility has long been considered to produce radioactive ion beams with a higher energy proton driver beam. A Consolidation and Improvements programme is presently underway to maintain ISOLDE’s position as a world-leading ISOL facility in the decades to come, with activities planned during the upcoming Long Shutdown 3 (LS3) (2026 - 28) and beyond. This contribution details a study to upgrade the beam line from the PS Booster to ISOLDE to operate between 1.4 and 2 GeV, and to increase the power of the proton driver in the future, assuming the replacement of the two beam dumps behind the facility’s production targets.
Paper: THPR28
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR28
About: Received: 13 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPR29
High fidelity numerical modelling and condition monitoring applied to septum magnets at CERN
3556
The CERN Accelerator Beam Transfer group has recently launched a study to investigate the life cycles of pulsed septum magnets. The development is aiming to enhance the prediction of anomalies, leading to reduced life cycles of these beam transfer equipment. For this reason, the standard vacuum operated, direct drive septa magnet has been chosen to investigate critical design features. In the initial project phase, a so called High-Fidelity (HF) numerical simulation has been carried out, providing insight on critical components, like brazed joints, reducing the fatigue life. In parallel a dedicated test setup with state-of-the-art instrumentation has been developed, allowing to confirm the predicted system response. The novel approach for the beam transfer equipment will allow to review presently established design criteria. In a further iteration, the project is now aiming to demonstrate an anomaly detection and their prediction based on novel machine learning techniques. This paper presents the initial phase of developing the HF model, as well as the results of the instrumented magnet tests which will be compared to results from the numerical simulations.
Paper: THPR29
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR29
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR30
Beam optics modelling of slow-extracted very high-energy heavy ions from the CERN Proton Synchrotron for radiation effects testing
3560
Testing of space-bound microelectronics plays a crucial role in ensuring the reliability of electronics exposed to the challenging radiation environment of outer space. This contribution describes the beam optics studies carried out for the run held in November 2023 in the context of the CERN High-Energy Accelerators for Radiation Testing and Shielding (HEARTS) experiment. It also delves into an investigation of the initial conditions at the start of the transfer line from the CERN Proton Synchrotron (PS) to the CERN High Energy Accelerator Mixed-field (CHARM) facility. Comprehensive optics measurement and simulation campaigns were carried out for this purpose and are presented here. Using a validated optics model of the transfer line, the impact of air scattering on the beam size was quantified with MAD-X and FLUKA, providing valuable insights into the current performance and limitations for Single Event Effects (SEE) testing at CHARM.
Paper: THPR30
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR30
About: Received: 07 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR31
Study of the performance and beam loss limitations during injection of high-intensity LHC proton beams
3564
The LHC Injectors Upgrade project at CERN optimized the injection accelerator chain to deliver proton intensities per bunch of 2.3e+11 ppb. Throughout 2023, the LHC was filled with up to 2464 bunches per beam using a hybrid injection scheme, involving up to 236 bunches per injection, with a maximum intensity per bunch of 1.6e+11 ppb. These beam parameters already revealed significant beam losses at the primary collimator in Point 7 during injection, with large fluctuations from fill to fill, limiting in several cases the machine performance. This contribution analyses the performance of the LHC during injection and discusses possible improvements.
Paper: THPR31
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR31
About: Received: 01 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Commissioning of the IOTA proton injector
The Proton Injector for the IOTA storage ring (IPI) has been constructed at the Fermilab Accelerator Science and Technology facility (FAST). It is a machine capable of delivering 20 mA pulses of protons at 2.5 MeV. IPI will operate alongside the existing electron injector beamline to facilitate further beam physics research and the continued development of novel accelerator technologies at the IOTA ring. This report details the results of the initial commissioning of IPI and an overview of the upcoming experiments with intense proton beams at IOTA.
THPR34
First implementation of RF-KO slow extraction at COSY
3568
Radio Frequency Knock Out (RF-KO) resonant slow extraction is commissioned at the Cooler Synchrotron (COSY) Jülich for the first time to extract the stored beam and deliver spills with constant particle rates to the experiments. Therefore, transverse RF excitation generated with a software-defined radio is applied to control the extraction rate. A built-in feedback system adjusts the excitation amplitude to maintain the desired extraction rate. To suppress fluctuations of the particle rate on timescales of milliseconds and below, an optimization algorithm is used to tune the RF excitation signals. The method was used extensively during the final run of COSY in 2023, reliably delivering stable beams to various users.
Paper: THPR34
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR34
About: Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR35
Optimizing non-linear kicker injection parameters using machine learning
3571
Synchrotron light source storage rings aim to maintain a continuous beam current without observable beam motion during injection. One element that paves the way to this target is the non-linear kicker (NLK). The field distribution it generates poses challenges for optimizing the topping-up operation. Within this study, a reinforcement learning agent was developed and trained to optimize the NLK operation parameters. We present the models employed, the optimization process, and the achieved results.
Paper: THPR35
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR35
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR36
Automated anomaly detection on European XFEL klystrons
3575
High-power multi-beam klystrons represent a key component to amplify RF to generate the accelerating field of the superconducting radio frequency (SRF) cavities at European XFEL. Exchanging these high-power components takes time and effort, thus it is necessary to minimize maintenance and downtime and at the same time maximize the device's operation. In an attempt to explore the behavior of klystrons using machine learning, we completed a series of experiments on our klystrons to determine various operational modes and conduct feature extraction and dimensionality reduction to extract the most valuable information about a normal operation. To analyze recorded data we used state-of-the-art data-driven learning techniques and recognized the most promising components that might help us better understand klystron operational states and identify early on possible faults or anomalies.
Paper: THPR36
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR36
About: Received: 16 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR37
Towards unlocking insights from logbooks using AI
3579
Electronic logbooks contain valuable information about activities and events concerning their associated particle accelerator facilities. However, the highly technical nature of logbook entries can hinder their usability and automation. As natural language processing (NLP) continues advancing, it offers opportunities to address various challenges that logbooks present. This work explores jointly testing a tailored Retrieval Augmented Generation (RAG) model for enhancing the usability of particle accelerator logbooks at institutes like DESY, BESSY, Fermilab, BNL, SLAC, LBNL, and CERN. The RAG model uses a corpus built on logbook contributions and aims to unlock insights from these logbooks by leveraging retrieval over facility datasets, including discussion about potential multimodal sources. Our goals are to increase the FAIR-ness (findability, accessibility, interoperability, and reusability) of logbooks by exploiting their information content to streamline everyday use, enable macro-analysis for root cause analysis, and facilitate problem-solving automation.
Paper: THPR37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR37
About: Received: 16 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
THPR38
Monte Carlo estimation of emittance growth during injection into the LANSCE PSR
3583
The Los Alamos Neutron Science Center (LANSCE) accelerator uses charge exchange injection to accumulate a high-intensity proton beam in the Proton Storage Ring (PSR). H- ions are accelerated to 800 MeV and then stripped of their electrons by a thin foil at the ring injection site. The Monte Carlo N-Particle (MCNP) radiation transport code has been used to estimate the effect foil thickness has on the emittance growth of the ion beam. Results for the scattering angle of individual particles and emittance growth of the injected beam are presented for a range of foil thicknesses.
Paper: THPR38
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR38
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR39
Review of known extraction kickers
3587
The following paper embarks on an in-depth exploration of extraction kickers employed at some of the most renowned particle physics and neutron science facilities worldwide. Specifically, we delve into the extraction kickers utilized at the Spallation Neutron Source, Fermi National Accelerator Laboratory, Los Alamos Neutron Science Center, and delve into the novel inductive adder structures. These facilities represent the forefront of scientific research, housing state-of-the-art technologies and extraction kicker systems that play a fundamental role in advancing our understanding of particle physics, neutron science, and related domains. Throughout the paper, we will investigate the design principles, operational intricacies, and technological innovations associated with these extraction kickers. By analyzing existing research and scholarly works, we aim to provide a comprehensive overview of the unique challenges and advancements encountered at each facility.
Paper: THPR39
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR39
About: Received: 10 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR40
The design of the proton-EDM injection line from BNL AGS booster
3591
The proton Electric Dipole Moment (pEDM) storage ring to measure the electric dipole moment of the proton [1] is proposed to be built in the tunnel of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) by storage ring EDM (srEDM) Collaboration. We proposed that the AGS Booster to pEDM ring transfer and injection line (BtP) would use the partial portions of the existing BtA (AGS Booster to AGS) transfer line optics. In this practice, both of BtP Clockwise orientation (CW) and Counter-clockwise orientation (CCW) injection line are designed and matched in the hypothesis of a single turn injection scheme. The injecting beam-properties are matched to pEDM ring Twiss functions.
Paper: THPR40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR40
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPR41
Investigating pulsed slow extraction schemes at the MedAustron synchrotron
3595
The temporal characteristics of ultra-high dose rate beams delivered for FLASH research are often dictated by machine constraints, making it challenging to compare the outcomes across studies performed at different facilities. To broaden the opportunities for systematic, non-clinical FLASH research, this study explores methods to deliver beams with customizable time structures from a medical synchrotron. The studies are being performed at the center for ion beam therapy and research MedAustron and aim at extracting ultra-high dose rate proton beams in a series of pulses with adjustable dose per pulse, pulse length and pulse separation down to sub-ms levels. This contribution describes the implementation of the extraction methods explored for this application, phase displacement and radio frequency knockout extraction, and presents first measurement results. The measurement setup employs a silicon carbide detector in conjunction with a 20 MHz bandwidth amplifier, enabling intensity measurements with a resolution exceeding the synchrotron revolution period.
Paper: THPR41
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR41
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR42
A double multi-turn injection scheme for mixed ¹²C⁶⁺ and ⁴He²⁺ beams
3599
With a very low relative charge-to-mass ratio offset of approximately 0.065%, helium (⁴He²⁺) and carbon ions (¹²C⁶⁺) are interesting candidates for being simultaneously accelerated in hadron therapy accelerators. At the same energy per nucleon, helium ions exhibit a stopping range approximately three times greater than that of carbon ions. They can therefore be exploited for online range verification in a detector downstream of the patient during carbon ion therapy. The synchrotron-based MedAustron Ion Therapy Center provides the opportunity to study the feasibility of such a mixed beam-based in-vivo range verification system due to the availability of 120-402.8 MeV/u carbon beams and the ongoing commissioning of 39.8-402.8 MeV/u helium beams. One possibility for creating this mixed beam is accelerating ⁴He²⁺ and ¹²C⁶⁺ sequentially through the LINAC and subsequently “mixing” the ion species at injection energy in the synchrotron with a double injection scheme. This contribution introduces this newly proposed injection scheme, outlines challenges and presents first feasibility estimates obtained through measurements and particle tracking simulations.
Paper: THPR42
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR42
About: Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR43
Towards the slow extraction of mixed He-2+ and C-6+ beams for online range verification
3603
In recent years, mixed helium and carbon ion irradiation schemes have been proposed to facilitate in-vivo range verification in ion beam therapy. Such a scheme proposes to deliver both ion species simultaneously, with the idea of performing the treatment with carbon ions, while exploiting helium for online dosimetry downstream of the patient. The center for ion beam therapy and research MedAustron supplies protons and carbon ions for clinical treatment. It is currently being commissioned to additionally provide helium ions for non-clinical research, opening the opportunity for exploring the feasibility of mixed beam irradiation. A key aspect in this context is the slow extraction of the ion mix, which is affected by the relative charge-to-mass ratio offset between the two ions of approximately 6e-4. This contribution analyses differences in the transverse phase space and tune distributions of the two ion species and subsequently discusses first simulation results of the extraction process.
Paper: THPR43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR43
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR44
Study of stripping magnets for LACE at the SNS
3607
We study possibility of laser assisted charge exchange injection at the SNS. The realistic injection of LACE injection and accumulation into the Ring of SNS is considered. The design of stripping magnets at the injection area is one of the most challenging problems toward operational scheme of LACE at the SNS. Basic requirements and needed parameters of stripping magnets are studied. Based on this study the possibility of real stripping magnet design is considered.
Paper: THPR44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR44
About: Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR45
Research on ultra-high energy electron beams for FLASH radiation therapy at ELSA
3610
Ultra-high energy electrons (UHEE) are used to investigate their effect on tumor cells and healthy tissue in short pulses of microseconds at the electron accelerator facility ELSA. This may enable highly efficient treatment of deep-seated tumors due to the FLASH effect. In a preliminary setting electrons with an energy of 1.2 GeV are used to irradiate cell samples which are located inside a water volume, representing the human body. Irradiation occurs with dose rates of up to 10 MGy/s due to the short pulse lengths of 250 ns. The relative biological effectiveness (RBE) can be determined by assessing the cell survival of tissues under FLASH and conventional conditions. For a precise dose determination, dose measurements via radiochromic films are utilized and compared to simulations with Geant4, that reproduce the electromagnetic shower process.
Paper: THPR45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR45
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR46
FLASH proton therapy facility design with permanent magnet
3613
We present a design of the proton FLASH radiation therapy facility using the Brag peak to be built at Stony Brook University Hospital at the Radiation Oncology Department. It includes an injector using a commercially available injector cyclotron (10-30 MeV), fixed field alternating (FFA) gradient beam lines, permanent magnet Fixed Field Alternating Gradient non-scaling variable transverse field fast-cycling synchrotron accelerator with unprecedented kinetic energy range between 10-250 MeV, and a permanent magnet delivery system the FFA gantry. This facility removes limitations of the present proton cancer therapy facilities allowing FLASH radiation to be performed with 40 Gy/s in 100 ms. This allows treatment with the FLASH therapy without magnet adjustments for any proton kinetic energy between 70-250 MeV. The proposal is based on already experimentally proven FFA concept at the Energy Recovery linac 'CBETA' built and commissioned at Cornell University.
Paper: THPR46
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR46
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR47
Investigating X-ray detector systems using Monte Carlo techniques
3617
Digital Tomosynthesis (DT) is a 3D mode of x-ray imaging. Adaptix Ltd have developed a novel mobile DT device enabled by implementing an array of R-ray emission points and a flat-panel detector. This device gives access to human and animal 3D imaging, as well as to non-destructive material evaluation. DT is not as clinically popular as Computed Tomography (CT) or radiography, and flat-panel source DT even less so, thus creating scope to investigate the optimal flat-panel detector technology for this modality. Geant4, a Monte Carlo Particle Transport code, has been used to simulate the Adaptix Ltd system to do this. Parameters such as the material composition of the detectors, the exact detection method and the inclusion vs exclusion of a scintillation layer are tested in this simulation environment. This work aims to find the optimal flat-panel detector design by comparing different scintillator compositions and structures for this DT method. Therefore, the ideal detector that preserves the advantages of this low-cost, low-dose scanning approach is determined.
Paper: THPR47
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR47
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR48
FLASHlab@PITZ beamline upgrade towards full functionality – status and plans
3621
At the Photo Injector Test facility at DESY in Zeuthen (PITZ), an R&D platform for electron FLASH cancer radiation therapy and radiation biology is being prepared: FLASHlab@PITZ. The design of the full beamline with optimized beam properties was finished; the setup is currently being finalized and the mechanical design and manufacturing is underway. The beamline runs in parallel to the SASE THz beamline at PITZ and is connected to it with a dogleg. Beam dynamics simulations were conducted to assure excellent beam quality at the experimental area. A fast kicker system will be installed which is capable of distributing electron bunches from a single bunch train freely over an area of 25mm x 25mm within one microsecond. When the full FLASHlab@PITZ beamline is ready in 2024, the accelerator will deliver 22 MeV electrons to generate dose rates from 0.01 Gy/s up to 10e+14 Gy/s to an experimental area, which can accommodate a variety of setups for irradiation studies. The flexible arrangement of the experimental area will make it possible for external users to collaborate with PITZ and conduct experiments with existing or newly designed irradiation setups.
Paper: THPR48
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR48
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR49
Electronic brachytherapy replacement of iridium-192
3625
The replacement of radionuclides used for cancer therapy with accelerators offers several advantages for both patients and medical staff. These include the elimination of: unwanted dose, specialized storage and transportation, and isotope production/replacement. Several electronic brachytherapy devices exist, and typically utilize an x-ray tube around 50 keV. These have primarily been used for skin cancer, though intraoperative applications are becoming possible. For several types of cancer, Iridium-192 has been the only brachytherapy treatment option, due to its high dose rate and 380 keV average energy. An accelerator-based alternative to Ir-192 has been developed, comprised of a 9.4 GHz, 1 MeV compact brazeless accelerator, narrow drift tube, and target. The accelerator is supported and positioned through the use of a robotic arm, allowing for remote delivery of radiation for internal cancer treatment. Preliminary results including dose rate and profile and plans for complete system demonstration will be presented.
Paper: THPR49
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR49
About: Received: 21 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR50
Nozzle design optimization for proton FLASH therapy
3629
An increasing number of accelerators are pursuing FLASH radiotherapy, which promises to mitigate unwanted damage to healthy tissues by applying ultra-high dose rates. To reach this extreme intensity regime, it is necessary to maximize the transmission through the exit nozzle, apart from increasing the accelerator’s output beam current. Simultaneously, the delivered beam properties must satisfy certain quality criteria that clinical applications require, such as transverse homogeneity. For this reason, a Python-based software has been developed to optimize the design of double-scattering beam nozzles. For a user-defined set of incoming beam parameters, output field requirements and available materials, the tool searches for the most efficient scattering conditions utilizing a graphical interface. These conditions are then translated into distances and shaping of the scatterers, involving a combination of high and low-density elements in a multiple-ring arrangement. A solution for the treatment of eye tumors has been successfully calculated, implemented, and tested with beam, in order to demonstrate the capabilities of this approach.
Paper: THPR50
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR50
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR51
A large momentum acceptance gantry for light-weight proton therapy facility: its beam lattice, magnets design and clinical advantages
3632
As one of the state-of-the-art radiotherapy approaches, proton therapy possesses conformal dose profiles yet expensive cost. Designing a facility with a small footprint and a high treatment efficiency is the main goal for researchers to fulfill the potential of proton therapy and make it more affordable both for vendors and patients. In this contribution, the design of a light-weight proton therapy gantry based on the alternating-gradient canted-cosine-theta (AG-CCT) super-conducting (SC) magnet is presented. The AG-CCT magnets adopt large bores and combined function design. With fine field harmonic control and fringe field shape optimization of the magnets, the multi-particle tracking results prove that the gantry achieves a momentum acceptance of ±8%. So that the full energy range from 70 to 230 MeV can be covered with merely 3 field switch points. Combined with a fast degrader component, whose switch time is below 50 ms, the energy modulation speed can be greatly fastened. To fully utilize the advantages of the large momentum acceptance gantry, the energy spread of the proton beam is expanded and a reduced treatment plan is proposed. Compared with the standard treatment plan, the energy layers number of a prostate case is reduced by 61.3% with comparable plan quality. In summary, the proposed gantry has significant superiority both in manufacture and clinical aspects.
Paper: THPR51
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR51
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR52
Medical irradiation studies at KIT accelerators
3635
Radiation therapy is an important oncological treatment method in which the tumor is irradiated with ionizing radiation. In recent years, the study of the beneficial effects of short intense radiation pulses (FLASH effect) or spatially fractionated radiation (MicroBeam/MiniBeam) have become an important research field. Systematic studies of this type often require research accelerators that are capable of generating the desired short intense pulses and, in general, possess a large and flexible parameter space for investigating a wide variety of irradiation methods. The KIT accelerators give access to complementary high-energy and time-resolved radiation sources. While the linac-based electron accelerator FLUTE (Ferninfrarot Linac- und Testexperiment) can generate ultrashort electron bunches, the electron storage ring KARA (Karlsruhe Research Accelerator) provides a source of pulsed X-rays. In this contribution, first dose measurements at FLUTE and KARA, as well as simulations using the Monte Carlo simulation program FLUKA are presented.
Paper: THPR52
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR52
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR54
The Laser-hybrid Accelerator for Radiobiological Applications (LhARA): an update towards the conceptual design
3639
LhARA, the Laser-hybrid Accelerator for Radiobiological Applications, is a proposed facility designed to advance radiobiological research by delivering high-intensity beams of protons and ions in unprecedented ways. Designed to serve the Ion Therapy Research Facility (ITRF), LhARA will be a two-stage facility that will employ laser-target acceleration in the first stage, generating proton bunches with energies around 15 MeV via the TNSA mechanism. A series of Gabor plasma lenses will efficiently capture the beam, directing it to an in-vitro end station. In the second stage, protons will be accelerated in a fixed-field alternating gradient ring, reaching up to 127 MeV, while ions can achieve up to 33.4 MeV/u. The resulting beams will be directed to either an in-vivo end station or a second in-vitro end station. The demonstrated technologies have the potential to shape the future of hadron therapy accelerators, offering versatility in time structures and spatial configurations, with instantaneous dose rates surpassing the ultra-high dose rates required for studies into the FLASH effect. Here, we present a status update of the LhARA accelerator as we approach a full conceptual design.
Paper: THPR54
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR54
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR55
SAFEST project, a compact C-band RF linac for VHEE FLASH radiotherapy
3643
FLASH Therapy, an innovative cancer treatment, minimizes radiation damage to healthy tissue while maintaining the same efficacy in tumor cure as conventional radiotherapy. Successful integration of FLASH therapy into clinical practice, specifically for treating deep-seated tumors with electrons, relies on achieving Very High Electron Energy (VHEE) within the 50-150 MeV range. In collaboration with INFN, Sapienza University actively develops a compact C-band high-gradient VHEE FLASH linac called SAFEST. This paper presents the general layout and the main characteristics of the machine and the first prototype set for deployment at Sapienza University of Rome. This endeavor is a significant step towards the clinical implementation of FLASH Therapy.
Paper: THPR55
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR55
About: Received: 06 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR57
Design study of a compact IH-DTL-based injector for proton therapy facilities
3647
A new proton injector based on the 425-MHz radio frequency quadrupole (RFQ) and interdigital H-mode drift tube linac (IH-DTL) has been designed. The injector is ~7 m long and comprises an electron-cyclotron-resonance (ECR) ion source, a low-energy beam transport, an RFQ, an IH-DTL, two triplets, a medium-energy beam transport, and a debuncher. The IH-DTL is specially designed with two tanks with different bunching phases, which can contribute to excellent transverse and longitudinal beam quality. The ion source produces an 18-mA proton beam with the energy of 30 keV. The output energy of the injector is 7 MeV with the transmission efficiency of 86.2%. A three-dimensional electromagnetic simulation was conducted, and the results agreed with the design. A systematic and mechanical design of the entire proton injector was also performed for the following research and development. The injector has great performance and is planned to be utilized in Shanghai APACTRON Proton Therapy facility (SAPT). In the future, it can also promote advanced proton accelerators for medical applications.
Paper: THPR57
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR57
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR58
Fabrication and tuning of a 325 MHz ion-injector prototype for particle therapy facility
3650
In order to miniaturize ion injectors for particle therapy, a design of ion injectors based on a 325 MHz operating frequency was completed. The LINAC was consist of a 2.0 m length RFQ and a 3.8 m length IH-DTL, which was designed to accelerate 12C4+, 3H+, 3He+ and 18O6+ beams to 7 MeV/u. The RFQ cavity and the first DTL tank was been manufactured using aluminum. This paper gives an overview of the fabrication and tuning procedure of the prototype. The quadrupole electric field of the RFQ is adjusted flat by the tuner while reducing the dipole field components in both directions. The measured DTL electric field distribution after tuning is in good agreement with the simulation results.
Paper: THPR58
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR58
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR59
Using octupoles to create uniform electron beam produced by irradiation accelerators
3653
In contemporary radiotherapy, most accelerators employ the scatter technique to achieve a relatively uniform dose distribution of electron beams. However, this method often results in the loss of a substantial number of particles, leading to suboptimal efficiency. This paper proposes a method utilizing permanent magnet components to homogenize the beam, achieving both beam spreading and uniformity within a short distance without particle loss. The proposed homogenization beamline comprises two quadrupole magnets and two octupole magnets, ultimately yielding a square field with a side length of approximately 20 cm. The manuscript includes theoretical derivations and simulation validations, with the physical prototype currently under fabrication. Experimental results will be provided in future work.
Paper: THPR59
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR59
About: Received: 11 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR60
Development of a multi-angle ultrahigh dose rate MV-level X-ray radiation system for FLASH radiotherapy clinical transformation
3656
In this work, MAX FLASH system (Multi-Angle ultrahigh dose rate megavolt-level X-ray radiation system for FLASH radiotherapy) is presented. This system consists of a rapid RF power distribution network and five linacs vertically installed at different coplanar angles. The distribution network can switch all power to one terminal linac between pulses. Electron beams are accelerated to 10 MeV with more than 400 mA peak currents in the high-performance linac and then convert into X-ray at a compact rotating target. The system aims for a compact FLASH radiotherapy clinical facility with a gantry 3 meter in diameter and 2.5 meter in length, which can be installed in most of hospital radiotherapy treatment rooms. There is reserved space in the gantry for a coplanar CBCT to implement for image guidance. The gantry can rotate to an optimized angle for a better conformality before radiation while the system remains stationary and switches the operating linac during radiation. Construction of the first system prototype, with 40 Gy/s dose rate at 80 cm source-axis-distance, is supposed to be finished in the summer of 2024.
Paper: THPR60
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR60
About: Received: 12 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR61
Focusing of high-energy electron beam using silicon crystals for application in radiotherapy
3659
By using a high-energy electron beam (beam energy of several hundred MeV) strongly focused on the tumor lesion area, radiotherapy can be performed with a relatively simple beam generation and handling system while resulting in a suitable shape of the deposition energy curve in a tissue-like material. Quadrupole magnets are typically used for beam focusing, which makes the beam delivery system complex and challenging from an engineering point of view. In the Geant4 simulation toolkit, we performed a feasibility study of an alternative solution, in which focusing is achieved by using a bent silicon crystal with an appropriately shaped exit surface. However, the focusing strength is still not high enough. Research to find the optimal crystal shape to achieve the ideal focusing strength is ongoing. Such a crystal lens can be a very light object (mass in the order of grams), allowing for a much simpler beam delivery system for radiotherapy facilities.
Paper: THPR61
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR61
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR62
Current status of MINIBEE: minibeam beamline for preclinical experiments on spatial fractionation in the FLASH regime
3663
In vivo studies support that the combination of protons and spatial fractionation, the so-called proton minibeam radiotherapy (pMBT), enhances the protection of normal tissue for a given tumor dose. A preclinical pMBT facility for small animal irradiation at the 68 MeV cyclotron of Helmholtz-Zentrum Berlin (HZB) will improve the understanding of this method. A two-step energy-degrading system will first define the maximum energy of the beam and further degrading will occur before the target forming a spread-out Bragg peak (SOBP), if necessary. Beam size and divergence will be adjusted by slit systems before a 90-degree magnet bending the beam into the experimental room. At the current stage, a magnetic quadrupole triplet placed close to the target demagnifies the beam by a factor of ~5. The goal is to generate a magnetically focused minibeam of 50 micrometer sigma. Scanning magnets will enable a raster-scan application in the tumor. Conventional dose rate delivery will be allowed while FLASH applications can be achieved with the possible use of a ridge filter. The results of beamline simulations by TRACE-3D and BDSIM will be presented.
Paper: THPR62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR62
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR63
Thermal diffusivity and acoustic properties of Nb thin films studied by time-domain thermoreflectance
3667
The thermal diffusion and acoustic properties of Nb impacts the thermal management of devices incorporating Nb thin films such as superconducting radiofrequency (SRF) cavities and superconducting high-speed electronic devices. The diffusion and acoustic properties of 200-800 nm thick Nb films deposited on Cu substrates were investigated using time-domain thermoreflectance (TDTR). The films were examined by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The grain size and thermal diffusivity increase with film thickness. The thermal diffusivity increased from 0.100± 0.002 cm2s-1 to 0.237± 0.002 cm2s-1 with the increase in film thickness from 200 nm (grain size 20±6 nm) to 800 nm (grain size 65±16 nm). Damped periodic photoacoustic signals are detected due to laser heating generated stress in the Nb film, which results in an acoustic pulse bouncing from the Nb/Cu and the Nb/vacuum interfaces. The period of the acoustic oscillation gives a longitudinal sound velocity of 3637.3 ms-1 inside the Nb films, which is in good agreement with the values reported in the literature.
Paper: THPR63
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR63
About: Received: 07 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR64
Design of cyclotron-based in-vacuum material irradiation beamline at TINT
3671
A new cyclotron facility has been constructed at Thailand Institute of Nuclear Technology to provide proton beams with energy of 15-30 MeV for radioisotope production and material analysis. Due to requirements of particle induced X-ray emission (PIXE) and particle induced gamma-ray emission (PIGE) techniques that need a low-energy and low-intensity proton beam in range of 2-15 MeV and picoamperes as well as high detection sensitivity, the additional setup including an energy degrader, a collimator, a 30-degree separator magnet, and a slit, is employed for an in-vacuum irradiation beamline. In this work, we study the proton beam trajectory and beamline elements. The energy degrader made of aluminum has shown promising results in decreasing the beam energy while the energy spread of a secondary beam is significantly reduced by the following 30-degree separator magnet. Furthermore, the combination of the collimator and the slit lessens the beam current to proper values. To measure the proton beam current downstream, a copper Faraday cup will be used.
Paper: THPR64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR64
About: Received: 12 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
THPR68
Field shaping techniques in a spectrometer magnet in the presence of ferromagnetic shielding
3674
The Targeted Alpha Tumor Therapy and Other Oncological Solutions (TATTOOS) project at the Paul Scherrer Institute aims to produce large quantities of radioisotopes (in the range of GBq), mainly Terbium-149, for the promising Targeted Alpha-particle Therapy (TAT) against metastasized cancer. To facilitate this, a new electromagnetic separator is currently being designed. Comprising two spectrometer magnets, the design of the separator is crucial, with magnetic properties and fringe fields strongly influencing beam characteristics and purity of the collected radioisotopes. The first of these magnets is exposed to high radiation and has strong requirements on surrounding shielding materials. The required steel for effective fast-neutron shielding introduces distortions to the field in the spectrometers. In this paper, we explore techniques to mitigate the sensitivity of the magnet to nearby shielding materials. The investigation begins with simulating a dipole magnet, assessing produced fringe fields, and understanding the influence of surrounding steel walls. Various methods, including Rogowski-profile ends, mirror plates, field clamps, and end shunts, are investigated to correct the aberrations in the generated field. The evaluation of produced field maps is quantified using harmonics, and the potential for tuning fringe fields with a sequence of end shunts is explored. Ultimately, the paper identifies the most suitable method for implementation in the TATTOOS project.
Paper: THPR68
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR68
About: Received: 20 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
Recovery of Neptunium-236g from Photon and Proton-Irradiated Actinide Targets
Neptunium-236g is a rare radionuclide used for nuclear material analyses. The availability of 236gNp is limited and the viable production routes are costly, time consuming, and only produce trace quantities of the desired product. For this work, two known production methods were tested to determine product recovery, purity, and viability for use as a tracer. The first method utilizes a photon-irradiated 237Np target to produce 236gNp by the 237Np(ɣ, n) → 236Np reaction. The second method utilizes the 238U(d, 4n) → 236Np reaction. These production routes were evaluated previously, and the former was considered ineffective without isotope separation and the latter was not well-characterized for the 236mNp/236gNp production ratio. Recent resurgence of electromagnetic isotope separation technology has enabled at least partial recovery of 236gNp from part-per-million abundance feeds produced by the photonuclear reaction. To address the lack of production data for the second method, a deuteron-irradiated depleted uranium target was chemically processed to recover and purify the Np for abundance and ratio analyses. The status and analytical results for each production method are presented.
THPR70
Development of a compact electron cyclotron resonance accelerator for industrial and security applications
3678
We describe the development of a novel accelerator, an electron Cyclotron Resonance Accelerator (eCRA) [1], to produce high power electron beams and X-ray beams for medical, research, sterilization, and national security applications. The several attractive features of eCRA include: a compact robust room-temperature single-cell RF cavity as the accelerating structure; continuous ampere-level high current output; and production of a self-rastering electron beam, thus eliminating the need for a separate beam scanner. Progress on the eCRA development, including numerical simulation, engineering design, and on-going experimental efforts will be reported here.
Paper: THPR70
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR70
About: Received: 24 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPR71
Container stripping: enhanced classification of materials within cargo containers
3681
For cargo and vehicle inspection, where high energy linear accelerators are used, materials within radio-graphic images can be classified using their atomic number (Z). The identification and classification of materials and objects within cargo containers can be difficult, due to the nature of energy spectra and their impact on the discrimination of materials. This can also be impacted by system-level factors, such as the stability of the linear accelerator and the alignment of the system. By removing the container from images of cargo, materials inside can be classified with higher confidence. When a low-Z, low density organic material is obscured by a 5 mm thick steel container, its effective-Z value changes and it can colorise as green rather than orange. This could lead to mis-classification of materials by an operator, potentially leading to the mis-identification of threatening materials. Further to the container removal, extra layers can be ‘stripped’ away to better reveal certain areas of interest. In future, this could be tied in with operator-assisting algorithms, as part of an enhanced image quality analysis package.
Paper: THPR71
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR71
About: Received: 08 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR72
The X-ray imaging laboratory: a radiation test facility for validating industrial linacs
3684
The X-ray Imaging Laboratory is a radiation test facility developed by Rapiscan systems at their facility in Stoke-On-Trent, UK. The X-ray Imaging Laboratory comprises two areas: the Test Facility and the Linac Development Area. The Test Facility is a state-of-the-art facility designed for subsystem and system level testing of x-ray imaging hardware utilizing normal conducting electron linacs with energies of up to 6MeV. The Test Facility is primarily focused on utilizing mature industrial linacs to produce x-rays for imaging validation. The Linac Development Area is a new facility focused on testing linear accelerator components and subsystems for a new generation of industrial electron linacs. The Linac Development Area includes a high voltage test area and a radiation test bunker. This allows for testing of critical components, such as modulators, in isolation in the high voltage test area and then as part of an industrial linac in the radiation test bunker.
Paper: THPR72
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR72
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR73
Status of ABC production line at Varex Imaging Corporation
3687
During past 7 years at Varex Imaging Corporation, we have created a pilot production line for Accelerator Beam Centerlines (ABC), replacing supply of Beam Centerlines (BCL) by Varian after the Component Division separated from Varian in 2017, becoming an independent public company. Our ABC production growth rate seems to double every year, and in last quarter of 2023 Fiscal Year, we delivered 35 ABCs, satisfying Industrial group full demand in such ABCs. In this 2024 Fiscal Year started on 1 October 2023, our goal is to deliver 12 units per month, but the stretch goal is to produce anywhere between 160 and 200 ABCs, which will include ABCs for 3, 6, and 9 MeV Linacs mostly for security screening, for Non-Destructive Testing (NDT), also a few units for our customers in radiation therapy business. We drive to complete the transition away from Varian to 100% in-house ABC production in 2025,
Paper: THPR73
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR73
About: Received: 07 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Environmental sustainability in basic research: a perspective from HECAP+
The High Energy Physics, Cosmology, Astroparticle Physics, and Hadron and Nuclear Physics (HECAP+) communities make use of common and similar experimental infrastructure, such as accelerators and observatories, and rely similarly on the processing of big data. Our communities therefore face immense challenges to improving the sustainability of our research. This poster presents the grassroots initiative which reflects on environmental sustainability in the context of High Energy Physics, Cosmology, Astroparticle Physics, and Hadron and Nuclear Physics (HECAP+). The document this poster is based on can be accessed at https://sustainable-hecap-plus.github.io.
THPR76
A new approach to solving the problem of an extended helical undulator
3690
An exact solution for the radiation field of a particle in a helical undulator, valid for an arbitrary point in space and an arbitrary particle energy, was obtained by the partial domain method, generalized for the case of spiral motion of a particle. The interface between the regions is a cylindrical surface containing the spiral trajectory of the particle. A comparison is made with the existing solution, which is valid in the far zone at high particle energies.
Paper: THPR76
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR76
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR77
Progress on pulsed electron beams for radiation effects characterization of electronics
3694
Ultrafast high-energy pulsed electron beams can provide deep penetration and variable linear energy transfers for testing microelectronics for radiation-induced single-event effects. Early experiments at the UCLA PEGASUS beamline (3 MeV) with 1 ps electron bunches and a 50 $\mu$m spot size yielded charge collection transients that are compared with reference heavy ion data. Sub-micron focusing of the beam would allow for the electron bunch to better mimic ion tracks by saturating the charge collection in a small cross-sectional area while simultaneously providing high spatial resolution to allow for the targeted testing of microelectronic components. Using micron-scale collimators and strong lenses, current experiments are planned at UCLA to achieve smaller spot sizes in pursuit of stronger correlations with heavy-ion data.
Paper: THPR77
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR77
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPR79
Alternative gamma-ray source based on 2.2 MeV linear accelerator with field emission cathode
3698
High energy gamma-ray generators have the potential to be used in place of radioisotope sources, thus eliminating the security risk posed by radioisotopic sources. Euclid Techlabs design of nonradioisotopic gamma-ray source is based on ultra-compact linear accelerator with affordable magnetron RF power feeding. Wide aperture 15 cell X-band linac with embedded field emission cathode operates without expensive high voltage electron gun and bulky magnetic focusing system. 2.2 MeV output electron energy and 1 μA average accelerated beam current on composite target can provide gamma-ray spectrum similar to 2nd category Cs-137 radioisotope source.
Paper: THPR79
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR79
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Generation of bunched beam for SRF industrial cryomodules
Compact SRF industrial linacs can provide unique parameters of the beam (>1 MW and >1-10 MeV) hardly achievable by normal conducting linacs within limited space. SRF technology was prohibitively expensive until the development of conduction cooling which opened the way for compact stand alone SRF systems suitable for industrial and research applications. Limited cooling capacity puts strict requirements on the beam parameters with zero losses of the beam on the SRF cavity walls. This implies strict requirements on the beam energy to be accepted by the cryomodule and most importantly the beam bunching with zero particles in between. We present one possible solution for this problem based on velocity bunching and tails annihilation by a dipole. A group of bunchers provide beam bunching and energy boost from 20 keV up to 300 keV to be acceptable by the cryomodule.
THPR82
Information display board system to enhance safety management at the National Synchrotron Radiation Research Center
3701
The National Synchrotron Radiation Research Center houses two accelerators, namely the Taiwan Light Source and the Taiwan Photon Source. It also includes approxi-mately 40 end stations. The center has an information display board system that integrates information from the Instrumentation and Control Group, Experimental Facilities Division, Scien-tific Research Division, Radiation and Operation Safety Division, and User Administration and Promotion Office in the form of interactive display pages. It provides cru-cial information, such as source status, beamline details, and user sign-in data, as well as useful resources, such as end-station training courses and experimental safety approval forms. The system offers diverse use cases tailored to the spe-cific needs of different users. This paper describes how we use the information display board system to improve safety management at the center.
Paper: THPR82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR82
About: Received: 05 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR83
Electrical fire safety assessment of the synchrotron accelerator experimental station in NSRRC
3704
The synchrotron facility and experimental station in the National Synchrotron Radiation Research Center (NSRRC) uses many electrical appliances, the improper use of which can cause fires, resulting in property damage and personal injury. Therefore, the usage of these electri-cal appliances must be assessed. This study conducted a comprehensive inspection and evaluation of the electrical appliances used in NSRRC, including extension cords and electrical connections; this was done to not only reduce the risk of fire but also emphasize the importance of electrical safety habits. We connected an extension cord reel in the NSRRC to a pump or a dehumidifier and used a thermal imaging cam-era to measure the temperature of the cord and these two appliances. We tested the extension cord reel when it was coiled up in the reel and straightened to determine which electrical appliances or extension cord states were prone to high temperatures and fires. The results showed that the extension cord was 18–20°C hotter when it was coiled than when it was straight. Therefore, we recommend that at least two-thirds of the length of the extension cord should be extended out of the reel when it is used.
Paper: THPR83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR83
About: Received: 05 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPR84
Development of a quality test platform for solid-state power amplifiers in NSRRC
3707
To rule out Solid-State Power Amplifier (SSPA) modules with defects due to handmade and reduce time cost of maintenance for deployed modules, it is essential to establish a comprehensive testing platform that includes a complete quality control system. In this study, we developed a platform with function of manipulating driving power and shutting down when failures are detected.
Paper: THPR84
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR84
About: Received: 14 May 2024 — Revised: 16 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPR85
Solid-state driven X-band linac for electron microscopy
3710
Current transmission electron microscopes (TEM) accelerate electrons to 200-300 keV using DC electron guns with a nanoamp of current and very low emittance. However at higher voltages these DC sources rapidly grow in size, oftentimes several meters tall for 1 MeV microscopes. Replacing these electron guns with a compact linac powered by solid-state sources could dramatically lower cost while maintaining beam quality, thereby increasing accessibility. Utilizing compact high shunt impedance X-band structures ensures that each RF cycle contains at most a few electrons, preserving beam coherence. CW operation of the RF linac is possible with distributed solid-state architectures* which power each cavity directly with solid-state amplifiers which can now provide up to 100W of power at X-band frequencies. We present a demonstrator design for a prototype low-cost CW RF linac for high-throughput electron diffraction producing 200 keV electrons with a standing-wave architecture where each cell is individually powered by a solid-state transistor. This design also provides an upgrade path for future compact MeV-scale sources on the order of 1 meter in size.
Paper: THPR85
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR85
About: Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR86
The gamma activation measurements at Shanghai Laser Electron Gamma Source (SLEGS)
3714
SLEGS is a Laser Compton Scattering gamma source. The gamma energy is 0.66 to 21.7 MeV, and the gamma flux is approximately 4.8e+5 to 1.5e+7 phs/s. Gamma activation method is used in beam flux monitor, medical isotpoe production and nuclear astrophysics in SLEGS*. Gamma beam flux under different collimated apertures has been checked by gamma activation method by using various half-life nuclide targets with an online activation and offline measurement platform. It is consistent with the flux measured with direct method by the LaBr3 detector. The activation method will be uniquely advantageous for monitoring gamma beam with short-life nuclide in a short time.A series of potential medical isotopes giant resonance production cross sections are measured by gamma activation method, which will provide key data for medical isotopes production by photonuclear reactions. The p-nuclei’s photonuclear cross sections**, for example Ru, are measured by photoneutron and gamma activation, which can provide favorable data on the much larger abundance of 98Ru, 96Ru. The activation experiment of SLEGS provides a reliable option for different experimental research objectives in photonuclear physics.
Paper: THPR86
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR86
About: Received: 17 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Ernest Courant traineeship in accelerator sciences
Ernest Courant Traineeship is a consortium of Stony Brook University, Brookhaven National Laboratory and Fermi National Accelerator Laboratory with goal of workforce development in Accelerator Science and Engineering at the Center for Accelerator Science and Education (CASE, SBU). We present the curriculum of the traineeship and advantages provided by access to large and medium accelerators, superconducting RF accelerators and related research, high power RF system engineering and large liquid helium cryogenic systems at SBU, BNL and FNAL.
Fabrication of 1.3 GHz Nb cavities at RadiaBeam
Niobium cavities are key elements in superconducting radiofrequency (SRF) accelerators. Despite increasing worldwide demand, global commercial production capacity is limited to a small number of vendors with virtually no US-based turn-key suppliers. As SRF technology expands across scientific research, industry, and technology sectors, the demand for their production is expected to rise even more in the coming years. Due to the limited supply base and very long delivery times, the US accelerator community is seeking to promote new vendors to enter SRF business capable of rapid iteration of low-volume/high mix R&D cavities. RadiaBeam has been involved in developing niobium fabrication capabilities for several years now, with the objective of understanding the technological challenges and commercial opportunities. In this paper, we present the progress in fabrication process of a single 1.3 GHz TESLA-style niobium cavity at RadiaBeam. This process involves the deep drawing of half cells, machining of weld joints, chemical cleaning, and electron beam welding capabilities.
European Laboratories for Advanced Sciences – an EC funded transnational access project for nuclear, high-energy physics and accelerator experiments and R&D support
European Laboratories for Accelerator Based Sciences (EURO-LABS), a program for research infrastructures services advancing the frontiers of knowledge, aims to provide unified transnational access (TNA) to leading Research Infrastructures (RI) across Europe. Taking over from previously running independent TNA programs, the new program brings the nuclear physics, the high-energy accelerator, and the high-energy detector R&D communities together to foster collaborations and to stimulate synergies. With 33 partners from European countries, EURO-LABS forms a large network of RIs. These RIs offer TNAs ranging from a modest size test infrastructure to large scale ESFRI facilities. The offered access will enable research at the technological frontiers in accelerator and detector development to explore new physics ideas and will open wider avenues in both basic and applied research in diverse topics ranging from optimal running of reactors to mimicking reactions in the stars. Within this large network, EURO-LABS will ensure diversity, and actively support researchers from different nationalities, gender, age, grade, and variety of professional expertise.