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Abstract
Reinforcement learning (RL) is a unique learning

paradigm that is particularly well-suited to tackle complex
control tasks, can deal with delayed consequences, and can
learn from experience without an explicit model of the dy-
namics of the problem. These properties make RL methods
extremely promising for applications in particle accelerators,
where the dynamically evolving conditions of both the par-
ticle beam and the accelerator systems must be constantly
considered. While the time to work on RL is now particularly
favorable thanks to the availability of high-level program-
ming libraries and resources, its implementation in particle
accelerators is not trivial and requires further consideration.
In this context, the Reinforcement Learning for Autonomous
Accelerators (RL4AA) international collaboration was estab-
lished to consolidate existing knowledge, share experiences
and ideas, and collaborate on accelerator-specific solutions
that leverage recent advances in RL. Here we report on two
collaboration workshops, RL4AA’23 and RL4AA’24, which
took place in February 2023 at Karlsruhe Institute of Tech-
nology and in February 2024 at Paris-Lodron Universität
Salzburg.

THE MISSION OF THE RL4AA
COLLABORATION

Machine learning (ML) has significantly increased in pop-
ularity over recent years within the particle accelerator com-
munity. However, RL remains relatively unknown, as in-
dicated by the low number of related publications, shown
in Fig. 1. This is partly due to the complex design of these
algorithms and the substantial time required to understand,
engineer, and deploy them. Given the increasingly strin-
gent beam parameters and performance metrics in frontier
particle accelerators, the precise control and real-time op-
timization of beam parameters in a dynamically changing
environment will be crucial for the efficient operation of
future facilities [1]. In this context, the primary aim of the
RL4AA collaboration is to consolidate RL efforts in the
particle accelerator community by establishing a unified
platform that:

1. Connects RL enthusiasts within the particle accelerator
community to foster collaborative projects across insti-
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tutions and facilitates interaction with other RL experts
for the exchange of ideas.

2. Educates on both fundamental and advanced RL con-
cepts and demonstrates practical applications in acceler-
ators, offering valuable resources such as programming
tutorials, lectures, and educational events.

3. Facilitates discussions on the challenges of developing
and deploying RL algorithms in particle accelerators
and other large-scale infrastructures.

4. Streamlines and speeds up the research process to un-
cover foundational, domain-specific solutions.
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Figure 1: Number of publications featuring the terms ”artifi-
cial intelligence” or ”machine learning” versus ”reinforce-
ment learning” in their abstracts, from the JACoW database.

These objectives are realized through annual workshops,
details of which are discussed in the following sections. The
communication and dissemination platforms provided by the
RL4AA collaboration include a website [2] that aggregates
news, relevant links, and RL-related publications; a GitHub
organization [3] that compiles the RL programming tuto-
rials offered by the collaboration; a Discord server [4] for
general announcements, meetings, and broader community
engagement; and a YouTube channel with recorded talks [5].

CHALLENGES IN RL
The challenges of applying RL algorithms to particle ac-

celerators are the same as those encountered during their
deployment in any real-world system. The most relevant
challenges include:

• Partial observability: This refers to situations where
the state is not directly observable and must be inferred
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from limited and/or noisy observations, a common sce-
nario in real-world environments. For example, during
accelerator operation, complete phase space informa-
tion is unavailable, relying on partial observations or
derived quantities such as beam position readings and
synchrotron radiation measurements. Some measure-
ments are destructive and can disturb the current state,
making them sparse and asynchronous compared to
non-destructive ones. With partial observability, the
algorithm must effectively infer the necessary informa-
tion from incomplete data to make optimal decisions,
which can make learning stable policies more challeng-
ing and computationally intensive.

• Sample complexity: This term refers to the number of
interactions with the environment required to achieve
a certain level of performance during the decision-
making process. Improving sample efficiency is crucial
when applying RL methods to particle accelerators, as
the cost of beam time for gathering real-world interac-
tions can be prohibitive. This depends on the accel-
erator’s repetition rate and the diagnostics available.
Reducing sample complexity can decrease the train-
ing costs of RL algorithms, enhance their scalability
and accessibility, facilitate real-time learning, and even
increase their safety.

• Safety: In RL, safety ensures that measures are in place
to prevent the algorithm from taking dangerous actions
during both training and deployment. For accelerator
physics applications, safety involves protecting against
injury or loss of life, damage to machine equipment,
and loss of beam time. The level of importance placed
on safety heavily depends on the accelerator facility’s
purpose, the beam energy and particle type, and the
complexity and extent of the machine interlocking sys-
tem. Although soft safety using negative rewards has
been demonstrated in other fields, such as fusion reactor
control [6], hard safety remains an unsolved challenge
in the RL community at large, including within the RL
accelerator community. Ensuring safety during training
is particularly challenging, making training on certain
particle accelerators unfeasible, even with available
beam time and sample-efficient RL algorithms.

• Robustness: This refers to the ability of an RL algo-
rithm to perform effectively across a variety of environ-
mental variations that were not specifically considered
during the training phase. This is particularly important
when transferring an algorithm trained on simulations
to the real world (sim2real), in the presence of parame-
ter drifts, or more generally, in non-stationary problems.
It is closely related to the concept of generalization.

• Generalization: This refers to the ability of a trained
RL algorithm to perform effectively in an environment
other than its training environment. Developing gen-
eralizable or transferable RL algorithms is especially
valuable, as particle accelerators share common design
principles and control tasks.

The RL4AA collaboration’s founders actively work on
these topics, for example, by developing high-speed, differ-
entiable optics simulations for faster training [7], exploring
domain randomization for bridging the sim2real gap [8] and
for training lattice-agnostic policies [9], implementing novel
meta-RL solutions [10], designing systems for online train-
ing and control on hardware [11], and comparing RL to other
ML solutions [12]. Other challenges such as algorithmic
stability, theoretical guarantees, and hyperparameter tuning
are also relevant and actively considered by the community.

FIRST WORKSHOP: RL4AA’23
The RL4AA collaboration was officially launched with

the first RL4AA workshop (Fig. 2), which was held at the
Karlsruhe Institute of Technology (KIT) on 20th-21st Febru-
ary 2023 [13]. With 31 registered participants, the event
targeted mostly scientists in Germany and Switzerland, and
focused on connecting the attendees through introductory
speed talks about their work in RL and through targeted dis-
cussion sessions. These discussion sessions were split in four
groups to address the third goal of the RL4AA collaboration
in a structured manner, namely:

• Community: Group to discuss the origins of RL, have
a broader perspective on its evolution, and understand
the current trends.

• Modeling, methods, and limitations: Group to dis-
cuss the origins and mathematical meaning behind RL
problems and methods so that we can use these tools
efficiently to solve relevant problems (if solvable at all).

• Challenges I & II: Groups to address the particular
challenges that arise in applying RL to real particle
accelerators.

Figure 2: The RL4AA’23 workshop participants on the
bridge of the Karlsruhe Research Accelerator (KARA) stor-
age ring at KIT during the accelerator facility tour.

RL4AA’23 Tutorial
The programming tutorial of the RL4AA’23 workshop

presented a real tuning task in the Accelerator Research
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Experiment at SINBAD (ARES) particle accelerator at
DESY [14, 15]. The task is performed in a particular section
of the accelerator, composed of three quadrupole focusing
magnets and two corrector magnets, as shown in Fig. 3. The
goal of the tuning task is to adjust the field strength of the
quadrupole magnets and the steering angles of the corrector
magnets to achieve a target beam chosen by a human opera-
tor, defined by its transverse size and position on a diagnostic
screen. The tutorial focuses on the importance of reward
definition, and walks the user through a series of rewards
and their effects on the actions taken by the algorithm. It
uses the high-speed, differentiable optics simulations code
Cheetah [7] for faster simulation-based training, and is based
on current research, where the algorithm was deployed in
the real accelerator [8].

Figure 3: Relevant section of the ARES accelerator used in
the RL4AA’23 workshop tutorial.

SECOND WORKSHOP: RL4AA’24
The second RL4AA workshop (Fig. 4) was held at the

Paris Lodron Universität Salzburg on the 5th-7th February
2024 [16]. With 56 registered participants, the event almost
doubled in size with respect to the previous year, showing the
consolidation of this event. Two keynote speakers outside
the field of accelerators were invited to share their valuable
expertise on deploying RL algorithms in real-world sys-
tems [17, 18]. The workshop also hosted facility overview
talks, contributed talks, student talks, and a poster session.
The tutorial was preceeded by an RL crash course and a ded-
icated lecture, and the event ended with an open discussion
about the community with the participants. All talks were
recorded and published on the RL4AA YouTube channel [5].

RL4AA’24 Tutorial
The programming tutorial of the RL4AA’24 workshop

targeted advanced RL users and dealt with a tuning task at
the Advanced Proton Driven Plasma Wakefield Acceleration
Experiment (AWAKE) beamline at CERN [19]. The goal of
the tuning task is minimizing the distance between an initial
beam trajectory and a target beam trajectory, as described by
the readings of 10 beam position monitors (BPMs), by using

Figure 4: RL4AA’24 workshop participants at the Paris
Lodron Universität Salzburg.

the available corrector magnets. The tutorial first shows how
to solve this task with a proximal policy optimization (PPO)
algorithm, and then with the model agnostic meta-learning
(MAML) algorithm. Meta-learning, also known as ”learn-
ing to learn”, aims to improve the learning process itself by
training a model on a variety of tasks so that it can learn new
tasks more efficiently. In the tutorial 8 different tasks were
used to update a meta policy, where the different tasks corre-
sponded to different lattice configurations (i.e. quadrupole
strengths). The tutorial shows that by using meta-learning
methods, the RL algorithm can converge in only a few steps.
A final part of the tutorial showed an example of model-
based reinforcement learning (MBRL), which constructs an
internal model of the environment to simulate interactions.
This method enhances sample efficiency by reducing the
need for direct system interaction. This tutorial is based on
current research, where the algorithm was deployed in the
real accelerator [20]. More information can be found in [10].

OUTLOOK
The RL4AA collaboration was established in 2023 and

has organized two workshops to date. The next RL4AA’25
workshop will be held at DESY in early spring 2025. With
these efforts we hope to bring RL to the accelerator commu-
nity and to develop novel solutions for current and future
accelerators.
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