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Abstract

Beam tuning in a post-accelerator facility such as TRI-
UMF’s Isotope Separator and ACcelerator (ISAC) involves
a considerable amount of overhead and often leads to tunes
which diverge from the theoretical optimum for the system,
introducing undesirable effects such as aberrations or chro-
matic couplings. Bayesian Optimization for Ion Steering
(BOIS) has been developed and tested to perform centroid
corrective steering, after the transverse optics have been
set to theory, in a method which is fully online and easy
to deploy. Naïve multi-objective adaptations, scaleBOIS
and boundBOIS have been introduced to perform corrective
transverse steering with minimal transverse fields . Tests
in the low-energy electrostatic transport beamlines at ISAC
I performed comparably to human operators. This work
holds promise for enhancing the efficiency and reliability of
beam delivery via autonomous tuning methods, supporting
TRIUMF’s scientific mission.

INTRODUCTION

The BOIS algorithm can perform online centroid correc-
tion of non-space-charge dominated Rare Isotope Beams
(RIBs). It has been developed and used at TRIUMF’s ISAC
facility [1, 2] which produces RIB by proton bombardment
of targets [3], to generate a variety of radionuclides through
processes including spallation [4], fragmentation [5], and to
a limited extent, fission [6]. At ISAC, tuning procedures have
been performed manually by trained operators who tune the
many elements in a beamline while monitoring transmission
on a downstream Faraday cup (FC). Recent work has devel-
oped a high-level application: Model Coupled Accelerator
Tuning (MCAT) [7] which involves controlling the beam
envelope by parallel modeling of the optical system using
the TRANSOPTR linear envelope code [8].

The presented algorithm then consequently tunes the steer-
ers for beam centroid correction. The BOIS approach ex-
clusively requires online data and matches the ability of
expert operators by achieving comparable transmission lev-
els within similar time frames. Alternative versions of this
framework are presented, to favor solutions that minimize
steering and avoid large transverse fields and excursions.
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BAYESIAN OPTIMIZATION
Bayesian Optimization (BO) is a black-box optimization

algorithm, suitable for noisy systems with expensive func-
tion evaluations [9]. In the simplest case, our objective
function takes in the different steerer values and returns the
current at a downstream FC. BO models the objective func-
tion using a faster to model mathematical surrogate (prior)
- usually a Gaussian Process (GP) model. It then uses an
acquisition function on this prior to select the next sampling
point, aiming to balance exploitation of the expected max-
ima, and exploration in areas of higher uncertainty. Figure 1
illustrates this in a simple 1D case. Within the BO frame-

Figure 1: Considering an unknown objective function (noisy
red) and some known data samples (blue dots) BO builds
an acquisition function 𝛼 (green) to sample it further and
creates a probabilistic model (blue line and shaded area for
2𝜎 confidence bounds). The cartoon shows two consecutive
steps: the maximum of the acquisition function at step 𝑛,
which guides the next sampling point at step 𝑛 + 1.

work, our method uses a Upper Confidence Bound (UCB)
acquisition function [10] , defined as:

𝑈𝐶𝐵(x) = 𝜇(x) + √𝛽𝜎(x) (1)

where a parameter 𝛽 can explicitly balance exploration or
exploitation with respectively values of 𝛽 ≪ 1 or 𝛽 ≫ 1.
We found that a slight focus on exploration is suitable for
our problem, with 𝛽 ∈ [2, 5].

A GP is a collection of random variables, every finite set
of which adheres to a joint Gaussian distribution, this offers
a flexible approach to model an unknown objective function.
The kernel encodes assumptions about the smoothness and
variability of the GP; here we choose a Matèrn Kernel [11]
with smoothness 5/2, corresponding to a function which is
twice differentiable. The equation is:
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Figure 2: Framework showcasing the intended use of BOIS.

Here the length-scale parameter 𝑙 is determined using an
inverse gamma distribution GP prior of the form:

𝑝(𝑥|𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)𝑥−𝛼−1𝑒
−𝛽
𝑥 , (3)

which gets updated at every BO step, and where we worked
with concentration parameter 𝛼 = 3 and rate parameter
𝛽 = 6.

METHODS: BOIS

Given the description of BO and the model choices above,
the BOIS framework is outlined in Fig. 2. The optimizer in
general uses 2𝑑 + 1 random sampling points, where 𝑑 is the
number of variables, or steerers, to then build the GP model
and proceed with the optimization step, which continues
until the current increase is not significant. In the end, the
performance of the optimizer is assessed via 1D posterior
scans: each of the steerers (dimensions) is scanned around a
neighborhood of the optimized value while keeping the rest
constant at their optimum values, and this is compared to
the GP posterior.

ISAC beamlines are designed [12, 13] with transverse
acceptances of 600𝜇m, while beam emittances are typically
around 30𝜇m. Various solutions with different beam mis-
alignements can therefore achieve comparable transmission
levels, and BOIS could find a solution that produces beam
which isn’t well centered at the FC. While human operators
would not be able to manually aim for less steered solu-
tions, a model can account for this. For this work, we tested
two naïve solutions, which are simpler to implement and

less computationally intensive than a formal multi-objective
treatment to find the Pareto front [14].

scaleBOIS employs a non-linear scalarization ap-
proach by utilizing a super-objective function that modifies
the traditional objective (i.e. optimizing the current at an
FC). The original objective function is scaled by a factor
𝑐 ∈ (0, 1), with 𝑐 = 1 indicating a beamline section with
neutral steering. The scaling function uses the normalized
mean steering deviations from neutral for each steerer 𝑠(𝑥) as
its input. We have achieved optimal results with a quadratic
scaling function:

𝑐(x) = −𝑝𝑠(x)2 + 1 (4)

and choosing a penalization parameter of 𝑝 = 1/4.

boundBOIS limits the input space and for each steerer
allows a maximum deflection of ±2 mrad, which is in the
order of the beam divergence. To impose a bound on the
deflection angle, the limit on steering voltage scales with
beam energy.

RESULTS AND DISCUSSION
Beam was transported through 30 meters of beamline,

including from the mass separator through the low-energy
transport section and polarizer [15] at ISAC-I, as well as
Offline Ion Source (OLIS) beam through the RFQ [16] and
accelerated into the MEBT section. Beam compositions and
energies varied depending on availability at time of testing,
specifically were 7Li+, 12C+, and 22Ne4+. Standard BOIS, as
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well as scaleBOIS and boundBOIS, were all shown to be
effective as operators, in terms of transmission and time.

Table 1: Transmission (tx) along Sections of the IMS to
Polariser Beamline, Comparing BOIS and Operator Perfor-
mance

Section (FC-FC) Sec-
tion

Length
(m)

Used /
tot

Steer-
ers

Oper-
ator

tx (%)

BOIS
tx (%)

IMS:14 - IMS:34 9 13/13 80 73
IMS:14 - IMS:34 9 4/13 80 89
IMS:34 - ILE2:1 15 17/21 95 95
ILE2:1 - ILE2:11 3 4/4 94 91
ILE2:11 - ILE2:19 4 7/7 73 75

The beamline from the ISAC mass separator (IMS) to
the polarizer was split into 4 sections, and 7Li+ beam at
25 keV was optimized using BOIS. Table 1 displays the
transmission achieved from the algorithm, with reference
to operator transmission. The section from IMS:FC14 to
IMS:FC34 includes a set of slits after the first steerers; with
this knowledge an operator would use the upstream steerers.
We artifically implant this information into the algorithm
which achieves better transmission in less time (due to lower
number of variables/inputs).

The two different steering-minimizing methods, and a
combination of them, were tested using a 22Ne4+ beam from
the Multicharge Ion Source (MCIS), as shown in Fig. 3.
Table 2 summarizes the steering. The classic BOIS runs
explore the whole parameter space, and find solutions where
steering angles are larger (at all steerers but ILT:XCB49).
The alternative options find solutions with less steering,
and from Table 2 using boundBOIS or a combination of
scale+boundBOIS show the least final steering. In the
presented run scaleBOIS reduced steering negligibly but
it did lower the steering when used in combination with
boundBOIS.

Table 2: Summarized results from the run displayed in Fig. 3.
Values calculated as the absolute value mean of all steering
applied. Results are only for one run of data.

BOIS type mean abs final steering angle (mrad)

BOIS 1.05
scaleBOIS 1.003
scale+boundBOIS 0.61
boundBOIS 0.78

Figure 3: Angles explored by BOIS for 10 consecutive steer-
ers from OLIS to the RFQ injection. We compare classic
BOIS and different steering reducing methods: scaleBOIS,
boundBOIS and a combination of both. The beam used is
22Ne4+, with a source bias of 22.48 kV. All tests used 𝛽 = 4.

CONCLUSION
Bayesian optimization has been applied to beam centroid

steering in a method which can find an optimal solution in rel-
atively few function evaluations, while accounting for noisy
data. The scaleBOIS and boundBOIS adaptations have
been able to optimize steering for a reduced field solution by
reducing the multi-objective problem to a single-objective,
and using both methods shows to be most effective. BOIS
performs comparably to human operators. Current and fu-
ture developments intend to expand the usage of the method
in the ISAC facilities and include high-energy (magnetic)
steering, and eventually become operational standard.
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