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Abstract
High-power multi-beam klystrons represent a key compo-

nent to amplify RF to generate the accelerating field of the
superconducting radio frequency (SRF) cavities at European
XFEL. Exchanging these high-power components takes time
and effort, thus it is necessary to minimize maintenance and
downtime and at the same time maximize the device’s opera-
tion. In an attempt to explore the behavior of klystrons using
machine learning, we completed a series of experiments on
our klystrons to determine various operational modes and
conduct feature extraction and dimensionality reduction to
extract the most valuable information about a normal op-
eration. To analyze recorded data we used state-of-the-art
data-driven learning techniques and recognized the most
promising components that might help us better understand
klystron operational states and identify early on possible
faults or anomalies.

INTRODUCTION
European XFEL is currently operating 25 klystrons. They

play a crucial role in the acceleration and operation of the
European XFEL. They function as radio frequency (RF)
power amplifiers, providing high-power RF signals that are
used to accelerate the charged particles to high energies
as they travel through the linear accelerator structure. The
performance and reliability of the klystrons directly impact
the accelerator’s ability to deliver the desired beam energy,
intensity, and stability to the experiment. Klystrons that are
not functioning optimally can lead to fluctuations in the RF
power, resulting in beam energy variations, reduced beam
intensity, or even beam loss. Failure of a klystron can cause
a complete interruption in the accelerator’s operation, as the
loss of RF power will prevent the particle beam from being
accelerated, leading to downtime for the accelerator facility
and disrupting ongoing experiments.

At the same time, klystrons are highly complex devices,
with many interdependent components and parameters. Di-
agnosing and predicting potential failures in them can be
very challenging because they have relatively high stability
and mostly operate as black boxes from a signal viewpoint.

In this work, we leverage machine learning techniques
for anomaly detection to better understand klystron opera-
tional states and identify potential faults before they lead to
downtime. We then employ a specialized one-class anomaly
loss [1] which is an unsupervised machine learning approach
that reduces the dimensionality of the inputs to isolate key
characteristics distinguishing normal functions. By train-
ing models on this reduced feature set, we can recognize
anomalies and incipient failures based solely on klystron

signals that we retrieve from DOOCS [2] and collect with
DxMAF [3], providing a data-driven means of maximizing
uptime for these delicate and expensive devices.

RELATED WORK

The first fully digital version of the Klystron Lifetime
Management (KLM) system was developed by Butkowski et
al. [4] to maximize the lifetime of klystron tubes used in the
X-Ray Free Electron Laser (XFEL) at DESY and has been
successfully running since then. In their setting at European
XFEL, klystrons are linear-beam vacuum tubes that operate
at 1.3 GHz and 10 MW power to accelerate electron bunches
for the European XFEL. A crucial component is the con-
tinuous operation of klystrons for at least 20 years, thus the
klystron lifetime needs to exceed 60,000 hours. The KLM
itself is a digital system that detects exceptional events like
arcing, RF breakdowns, etc., and takes preventive actions
(interrupt the drive) to avoid potential complications leading
to longer downtime. In the implementation of [4], it is cru-
cial to have a fast and reliable FPGA implementation that
handles protection functions such as reflection limitation,
forward/input power correspondence, and energy monitor-
ing within 300 nanoseconds. The KLM system serves as an
effective preventive measure to avoid klystron damage from
exceptional events during operation. Our research aims to go
a step further; by detecting potential issues at an even earlier
stage before they manifest as urgent events, we can provide
more lead time to anticipate problems and take preventive
action.

In [5] authors propose an anomaly detection approach
using a neural network model to predict breakdowns on
superconducting radio frequency (SRF) cavities at the Euro-
pean XFEL. They experiment with two models: one trained
with a semi-supervised anomaly loss (SAL) [6] and another
with binary cross-entropy loss (BCE). The SAL model uses
a small set of labeled anomalous data along with a larger set
of normal data, while the BCE model is trained in a fully
supervised manner on the labeled data and requires balance
in training data.

Our approach is similar to [5], but we use the unsuper-
vised one-class loss [1] (OC) instead of the SAL [6], as we
lack labeled anomalous cases. The model is trained solely
on standard waveform modes, allowing it to learn normal
patterns and detect deviations as anomalies without labels.
The one-class loss’s sensitivity can potentially enhance the
klystron lifetime and reliability by alarming operators based
on training to sensitive modes of klystron signals character-
izing the state. Additionally, we obtain a latent variable en-
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coding the klystron state and potential drift(s) as the model’s
output embedding of the klystron state changes.

METHOD
One Class Loss

Deep OC classification [1] is a loss function that aims to
train a model to inputs belonging to a specific class(es) by
learning solely from training data containing examples of
that class. This approach differs from traditional classifi-
cation problems where the training data includes examples
from all classes, and where the goal is to distinguish between
the classes. The objective of OC loss is to model the charac-
teristics of the single class of interest which is dominating
the inputs, rather than distinguishing it from other classes.

Consider a function 𝑓\ : R𝑁 ↦→ R𝑀 (a neural network).
The objective of OC is to minimize the distance between a
fixed (randomly chosen) hypersphere center c ∈ R𝑀 and the
projection 𝑓\ of most (non-anomalous points) x,

arg min\ ∥ 𝑓\ (x) − c∥2︸          ︷︷          ︸
anomaly score 𝑠 (x)

, (1)

where parameters \ of 𝑓 are optimized to project x to c.
The OC loss is an anomaly score 𝑠. If 𝑓\ has bias parameters,
fix biases and c to avoid trivial solution [1], where biases
converge to c.

Furthermore, the 𝑓\ (x) encodes x’s state based on dis-
tance and position, thus outputs can be visualized and ana-
lyzed via T-SNE [7] as a state embeddings.

Architecture
The architecture consists of an input layer that takes a

sequence of 205 features, followed by an LSTM layer with
either 32 or 64 hidden units (𝑀) to capture temporal depen-
dencies in the input sequence. The LSTM layer’s output is
then mapped by a linear layer to real numbers, which is the
final model embedding, see Eq. 1.

Inputs
States of the klystrons are expressed by the following

waveforms: FD.F1 is forward power at the first klystron arm,
FD.F2 is forward power at the second klystron arm, FD.FI
is forward power at klystron input, FD.R1 is reflected power
at first klystron arm, FD.R2 is reflected power at second
klystron arm, and FD.RI is reflected power at klystron input.
Each waveform consists of 2048 amplitude and phase values.

Pre-processing First, we transform the amplitude and
phase into in-phase and quadrature components (IQ). Then
we sub-sample waveforms, taking only every 10th value to
lower computational requirements. Our experiments show
only FD.RI is essential without losing too much recognition
ability. Each waveform is normalized to zero mean and unit
standard deviation.
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Figure 1: Anomaly scores 𝑠 of the event that took place on
Mar. 7th 2023 (top) and Feb. 1st 2024 (bottom) Top: Notice
the bump around 9:13:16 which increases the 𝑠 until the
klystron is shut down (after 9:23:45). Right: The anomaly
score fluctuates quite significantly over an extended period
(10:24:26 - 15:03:06). There is a peak around 14:30, which
precedes severe disruption of observed signals.

RESULTS
We selected two events that were detected post mortem as

anomalous with our detection system, from which one led
to a fatal failure of klystron (Feb. 1st 2024).

Event on Mar. 7th 2023
The probable cause of this issue is multipacting, where

electrons emitted from the cathode or other surfaces within
the vacuum envelope of the klystron A13 can become trapped
in a resonant trajectory, repeatedly striking the cavity walls.
This process can begin suddenly and escalate rapidly, cre-
ating a high density electron cloud that can absorb energy
from the RF field, leading to excessive heating, outgassing,
and ultimately RF breakdown in the klystron.

Our algorithm notices the first issue at 08:38:21, where
there is a slight bump in 𝑠, see Fig. 1 (top). Furthermore,
at around 9:13:16, there is a noticeable jump of 𝑠 followed
by a steady increase in score. An unexpected state change
is observed in the FD.FI signal, as it is also visible from
the phase in Fig. 2 at that time. After this bump, which
peaks approximately around 9:14:00, there is a noticeable
change in the phase. When we take a detailed look at the
T-SNE embedding of the vectors 𝑓 in that time range, we
can divide the space into three separate clusters according
to Fig. 4 (left): blue states corresponding to normal state(s),
green points which are waveforms that are projected by 𝑓

away from the blue points, and red states which are states
that follow after the peak (a klystron drift).

Event on Feb. 1st 2024
The A16 klystron experienced a catastrophic failure, be-

ing unable to sustain the required high voltage, likely due
to excessive dark current. The reflected power levels fluc-
tuate erratically, another potential symptom of dark current
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Figure 2: The phase of the event that took place on Mar. 7th 2023. Each column is one waveform FD.RI of one pulse.
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Figure 3: Amplitude and phase of FD.RI of the event from Feb. 1st 2024.

issues. Despite attempts to mitigate arcing events, the arc-
ing persisted, eventually leading to permanent damage to
the klystron tube. Physical disassembly and inspection of
internal components is required for comprehensive failure
analysis after klystron replacement.

With the trained algorithm, one can observe mild fluc-
tuations of 𝑠, see right Fig. 1. For instance, approximately
periods 11:18 - 11:35, 13:02 - 13:19, and finally a noticeable
peak around 14:30 which might indicate a bigger problem
before the station stops sending signals (after 15:09). By
looking at the input signals in Fig. 3, we can see that there are
several mode changes (approximately 10:26 - 11:18, 11:35
- 11:52, 13:19 - 13:36), this is also visible in two distinct

Mar. 7th 2023 Feb. 1st 2024

−75 −50 −25 0 25 50 75

−80

−60

−40

−20

0

20

40

60

80

−100 −75 −50 −25 0 25 50 75 100
−100

−75

−50

−25

0

25

50

75

100

Figure 4: T-SNE Embedding shows a reduced projection
of the network from 𝑀 dimensions onto 2D while distance
is preserved. The colors of the left image encode different
𝑠 levels (red between (0.04, 0.06), blue between (0, 0.04)
and green (0.06,∞). Similarly on the right figure, red color
encodes 𝑠 above 0.007.

clusters in the T-SNE embedding in right Fig. 4. What is
however quite noticeable is variation in the first third of the
phase, where values fluctuate quite significantly.

CONCLUSION
In this work, we demonstrated the application of unsu-

pervised deep one-class classification with an LSTM model
for sequential anomaly detection in the operational signals
of high-power klystrons at the European XFEL facility. By
training solely on normal waveform data, the model learns
to characterize standard klystron behavior and identify de-
viations as potential anomalies or faults. We presented two
case studies of actual events - a suspected multipacting issue
on Mar. 7th 2023, and a catastrophic klystron failure on
Feb. 1st 2024. Our algorithm identified precursors, flagging
anomalous waveform patterns before the issues escalated
to system failures or downtime which were assessed by the
experts.
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