target
MOPC18
Simulated impact of the HL-LHC beam on a graphite target
91
In the High Luminosity Large Hadron Collider (HL-LHC) era, the intensity of the circulating bunches will increase to 2.2e+11 protons per bunch, almost twice the nominal LHC value. Besides detailed studies of known and new failure cases for HL-LHC, it is also required to investigate failures beyond nominal design. A consequence of such failures can be the impact of a large number of high-energy particles in one location, resulting in a significantly increased dam- age range due to an effect called hydrodynamic tunnelling. This phenomenon is studied by coupling FLUKA, an energy deposition code, and Autodyn, a hydrodynamic code. This paper presents the simulated evolution of the deposited energy, density, temperature and pressure for the impact of the HL-LHC beam on a graphite target. It then computes the resulting tunnelling range and finally compares the outcome with previous studies using LHC intensities.
Paper: MOPC18
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC18
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPC20
LHC 2023 ion optics commissioning
99
In 2023, about 2 months of the LHC operation were devoted to the Heavy Ions physics, after more than 5 years since the last ion run. In this paper, the results of the 2023 Ion optics commissioning are reported. Local corrections in Interaction Point (IP) 1 and 5 were reused from the regular proton commissioning, but the optics measurement showed the need for new local corrections in IP2. We observed that an energy trim of the level of 10e-4 helped to reduce the optics errors at top energy. The dedicated measurements during the energy ramp revealed a larger than expected beta-beat, which is consistent with an energy mismatch. Furthermore, global corrections were performed to reach a β-beating of about 5% for the collision optics.
Paper: MOPC20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC20
About: Received: 13 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPC21
Feasibility study of the Alice fixed-target experiment with HL-LHC lead ion beams based on crystal-assisted beam Halo splitting
103
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is the world's largest and most powerful particle accelerator, colliding beams of protons and lead ions at energies up to 7 ZTeV. ALICE is one of the detector experiments optimized for heavy-ion collisions. A fixed-target experiment in ALICE is considered to collide a portion of the beam halo, split using a bent crystal, with an internal target placed a few meters upstream of the detector. For proton beams, we have already demonstrated that such a setup provides satisfactory performance in terms of particle flux on target and that it can be safely operated in parallel to regular beam-beam collisions. On the other hand, in the case of lead ion beams, a beam halo is populated with nuclei of many species that may differ in charge, mass and magnetic rigidity, making such a scenario more challenging to operate. This paper summarizes our first considerations of the feasibility of a fixed-target layout at ALICE to be operated with lead ion beams in the LHC.
Paper: MOPC21
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC21
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPC31
Establishing a new class of high-current accelerator-driven neutron sources with the HBS Project
129
Accelerator-driven high brilliance neutron sources are an attractive alternative to the classical neutron sources of fission reactors and spallation sources to provide scientists with neutrons. A new class of such neutron facilities has been established referred to as High-Current Accelerator-driven Neutron Sources (HiCANS). The basic features of HiCANS are a medium-energy proton accelerator with of tens of MeV and up to 100 mA beam current, a compact neutron production and moderator unit and an optimized neutron transport system to provide a full suite of high performance, fast, epithermal, thermal and cold neutron instruments. The Jülich Centre for Neutron Science (JCNS) has established a project to develop, design and demonstrate such a novel accelerator-driven facility termed High Brilliance neutron Source (HBS). The aim of the project is to build a versatile neutron source as a user facility. Embedded in an international collaboration, the HBS project offers the best flexible solutions for scientific and industrial users. The overall conceptual and technical design of the HBS as a blueprint for the HiCANS facility has been published in a series of recent reports. The status and next steps of the project will be presented, focusing on the high-current linear accelerator and the proton beamline, including a novel multiplexer to distribute the proton beam to three different neutron target stations while adapting a flexible pulse structure.
Paper: MOPC31
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC31
About: Received: 08 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
MOPC53
Towards large phase space beams at the CEBAF injector
180
We report on the status of a degrader device to generate large phase space beams for machine acceptance studies in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. The degrader device consists of thin, low-Z targets to degrade the electron beam phase space through multiple scattering, two apertures to define the maximum transverse emittance, and a solenoid to aid in matching to the rest of the injector beamline. The engineering design of the degrader device and projected degraded beam phase space parameters obtained from simulation are presented.
Paper: MOPC53
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC53
About: Received: 13 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
MOPC54
Simulations of positron capture at Ce+BAF
184
We present an initial capture concept for the continuous wave (CW) polarized positron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) upgrade at Jefferson Lab. This two-step concept is based on (1) the generation of bremsstrahlung radiation by a longitudinally polarized electron beam (1 mA, 120 MeV, >90% polarization), passing through a tungsten target, and (2) the production of e+e- pairs by these bremsstrahlung photons in the same target. To provide highly-polarized positron beams (>60% polarization) or high-current positron beams (>1 μA) with low polarization for nuclear physics experiments, the positron source requires a flexible capture system with an adjustable energy selection band. The results of beam dynamics simulations and calculations of the power deposited in the positron capture section are presented.
Paper: MOPC54
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC54
About: Received: 13 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPC62
Computational simulations and beamline optimizations for an electron beam degrader at CEBAF
204
An electron beam degrader is under development with the objective of measuring the transverse and longitudinal acceptance of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This project is in support of the CE+BAF positron capability. Computational simulations of beam-target interactions and particle tracking were performed integrating the GEANT4 and Elegant toolkits. A solenoid was added to the setup to control the beam's divergence. Parameter optimization of the solenoid field and magnetic quadrupoles gradient was also performed to further reduce particle loss through the rest of the injector beamline.
Paper: MOPC62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC62
About: Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
MOPC63
New high power linear accelerator ABC and platform
208
At Varex Imaging Corporation, we have started a transition to our in-house supply of Accelerator Beam Centerlines (ABC), replacing Varian as a supplier. As part of this program we are considering changing design of our K-15, the only standard production unit capable of delivering Bremsstrahlung at 12000 R/min@1m by striking a copper target with high energy electron beam at 15 MeV. We plan on changing the RF source from frequency of 2856 MHz, used by Varian to 2998 MHz, establishing one common frequency for all our S-Band linear accelerator supply. We may be using a two-section design of the new 15 MeV ABC and yet various designs are being investigated, including, but not limited to two collinear standing wave (SW) sections and a patented combination of SW and Traveling Wave (TW) Sections with reverse feed. We have analyzed both concepts and present the preliminary analysis results. The platform can be used for running guides at various energy levels from 2 to 20 MeV, continuously changing energy or doing that selectively, various combinations of energy levels will be possible, also, upgrading the platform to higher average beam power levels. Indeed, operating at high average beam power above 1-2 kW level may require new advanced target development, and in case of e-beam applications, a scan horn will be required for extracting e-beam from vacuum to air.
Paper: MOPC63
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC63
About: Received: 07 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
MOPG08
Beam-based alignment simulations for the Future Circular Collider electron lattice
308
Parallel beam-based alignment (PBBA) techniques can be used to determine the magnetic centers for multiple magnets with simultaneous measurements and are much faster than traditional methods which target one magnet at a time. The PBBA techniques are very desirable for commissioning larger machines such as the Future Circular Collider (FCC). In this study, we applied PBBA techniques on quadrupoles and sextupole magnets for the FCC-ee lattice in simulations. Improvements to the PBBA techniques were made. It is shown that sub 10-micron accuracy for quadrupoles and sub 20-micro accuracy for sextupoles can be achieved.
Paper: MOPG08
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG08
About: Received: 10 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPG20
VUV diagnostics for oscillator FEL operation from 200 nm to 155 nm
347
Powered by a storage ring with energies ranging from 240 MeV to 1.2 GeV, the Duke Free-Electron Laser (FEL) has demonstrated operation across a broad wavelength spectrum from infrared (IR) to vacuum ultraviolet (VUV): 1100 nm to 170 nm. This FEL serves as a photon source for the High Intensity Gamma-ray Source (HIGS), producing polarized, near-monochromatic, and high-flux Compton gamma-ray beams in an extensive energy range from 1 MeV to 120 MeV, with the highest flux recorded at 3.5e+10 ph/s (total) around 10 MeV. To generate high-energy gamma-ray beams above 80 MeV, the FEL must operate in the VUV region from 195 nm to 155 nm. This work describes the development and operation of VUV beam diagnostics within a nitrogen-purged enclosure, with increased difficulty as the wavelength shortens towards 155 nm. We will discuss the challenges encountered and the solutions found for VUV beam diagnostics, leading to the successful FEL lasing in the VUV region.
Paper: MOPG20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG20
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPG79
Calculation of focal spot of secondary X-rays generated by high-energy electron beam bombarding of heavy metal targets
445
One of the main methods to generate X-rays is to bombard metal targets with electron beams. However, this process introduces uncertainty in the electron transport, which leads to uncertainty in the position and momentum of the secondary X-rays. As a result, the focal spot of the X-rays is larger than the electron beam. In this paper, we use the Monte Carlo software Geant4 to investigate the conditions for minimizing the X-ray focal spot size. We assign different weights to the X-rays according to their energy components, based on the actual application parameters, and calculate the focal spot size for three target materials: lead, copper, and tungsten, finding that when the incident electron energy is in the MeV range and the electron source radius is 1 um, the mass thickness of the target of 1.935×10e-3 g/cm^2 is the limit for achieving the smallest equivalent focal spot size.
Paper: MOPG79
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPG79
About: Received: 13 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPR03
Cooling demonstrator target and pion capture study
456
The muon collider has great potential to facilitate multi-TeV lepton-antilepton collisions. Reaching a suitably high luminosity requires low-emittance high-intensity muon beams. Ionization cooling is the technique proposed to reduce the emittance of muon beams. The Muon Ionization Cooling Experiment (MICE) has demonstrated transverse emittance reduction through ionization cooling by passing the beams with relatively large emittance through a single absorber, without acceleration. The international Muon Collider Collaboration aims to demonstrate 6-D ionization cooling at low emittance using beam acceleration. Two siting options are currently considered for a Cooling Demonstrator facility at CERN, with proton-driven pion production facilitated by the Proton Synchrotron or the Super Proton Synchrotron. In this work, we use FLUKA-based Monte Carlo simulations to optimize the number of pions produced in the proton-target interactions and subsequently captured by a magnetic horn-based system. We explore the feasibility of different target and capture system designs for 14, 26 and 100 GeV proton beam energies.
Paper: MOPR03
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR03
About: Received: 15 May 2024 — Revised: 16 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
MOPR68
Development of liquid lithium target in crucible for laser ion source
595
A liquid lithium target system is being developed for laser ion sources. Existing laser ion sources are operated at the repetition rate of the order of 1 Hz. The limitation stems from the use of solid laser targets because of the craters created and the need to provide a fresh surface by either repositioning the laser beam or the target. In addition, an enormously large surface area is needed for long-term operation. This limits the total yield of lithium ions and the application of laser ion sources. To dramatically increase the repetition rate, we propose the use of a liquid lithium target in a crucible because a liquid surface shape is recovered by itself after laser irradiation. The establishment of a liquid target system is an important objective for the development of the intense lithium beam driver for a clean compact source of a directional neutron beam. In the conference, the concept and design of experimental apparatus for the development will be presented.
Paper: MOPR68
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR68
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
MOPS65
Enhancing CERN-SPS slow extraction efficiency: meta Bayesian optimisation in crystal shadowing
870
The Super Proton Synchrotron at CERN serves the fixed-target experiments of the North Area, providing protons and ions via slow extraction, and employs the crystal shadowing technique to significantly minimize losses. Over the past three operational years, the use of a crystal, positioned upstream of the electrostatic septum to shadow its blade, has allowed to achieve a 25% reduction in losses. Additionally, a novel non-local shadowing technique, utilizing a different crystal location, has successfully halved these losses. While using a single crystal in this location resulted in a temporary 50% reduction in slow extraction losses at nominal intensity, this effect was not sustainable beyond a few hours. This limitation is primarily attributed to the magnetic non-reproducibility and hysteresis inherent to the SPS main dipoles and quadrupoles. In this paper, we introduce the application of the Rank-Weighted Gaussian Process Ensemble to the setup of shadowing. We demonstrate its superior efficiency and effectiveness in comparison to traditional Bayesian optimization and other numerical methods, particularly in managing the complex dynamics of local and non-local shadowing.
Paper: MOPS65
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS65
About: Received: 08 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
MOPS66
First operational experience with data-driven hysteresis compensation for the main dipole magnets of the CERN SPS
874
Magnetic hysteresis, eddy currents, and manufacturing imperfections pose significant challenges for beam operation in multi-cycling synchrotrons. Addressing the dynamic dependency of magnetic fields on cycling history is a current limitation for control room tools using existing models. This paper outlines recent advancements to solve this, presenting the outcome of operational tests utilizing data-driven approaches and an overview of the next steps. Notably, artificial neural networks, including long short-term memory networks, transformers and other time series analysis architectures, are employed to model static and dynamic effects in the main dipole magnets of the CERN SPS. These networks capture hysteresis and eddy current decays based on measured magnetic field and data from the real-time magnetic measurement system of the SPS main dipoles. Cycle-by-cycle feed-forward corrections are implemented through the CERN accelerator controls infrastructure, which propagate corrections of magnetic fields to corresponding adjustments in the current of the power converters feeding the magnets.
Paper: MOPS66
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS66
About: Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
MOPS70
NuMI beam muon monitor data analysis and simulation for improved beam monitoring
889
Following the decommissioning of the Main Injector Neutrino Oscillation Search (MINOS) experiment, muon and hadron monitors have emerged as essential diagnostic tools for the NuMI Off-axis nu_mu Appearance (NOvA) experiment at Fermilab. For this study, we use a combination of muon monitor simulation and measurement data to study the monitor responses to variations in proton beam and lattice parameters. We also apply pattern-recognition algorithms to develop machine-learning-based models to establish correlations between muon monitor signals, primary beam parameters, and neutrino flux at the detectors.
Paper: MOPS70
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS70
About: Received: 23 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
TUAD3
Simulation and study of the nuSTORM (neutrinos from Stored Muons) experiment
935
The nuSTORM experiment aims to create neutrino beams through muon decay in a storage ring, targeting %-level precision in flux determination. With access to two neutrino flavors, it enables precise measurement of nu-A cross sections and exhibits sensitivity to Beyond Standard Model (BSM) physics. With muons in the 1-6 GeV/c momentum range, it covers neutrino energy regimes relevant to experiments like DUNE and T2HK. Additionally, nuSTORM serves as a step towards a muon collider, a proof of concept for storage rings, and a test for beam monitoring and magnet technologies. The lattice structure consists of a pion transport line and a racetrack storage ring based on a hybrid FFA design, with conventional FODO cells in the production straight combined with FFA cells in the return straight and arcs. Using the nuSIM framework and BDSIM, this study simulates and optimizes the nuSTORM lattice, using beams from existing proton drivers. Using GENIE, neutrino events and their rates at the detector at different energies are also presented. The creation of synthetic neutrino beams like nuPRISM, allowing for >65% narrower neutrino beams than the natural muon decay spectrum is also discussed.
Paper: TUAD3
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUAD3
About: Received: 15 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
TUPC50
The PSI positron production project
1118
The PSI Positron Production experiment, known as P\textsuperscript{3} or \textit{P-cubed}, is a proof-of-principle positron source and capture system that can greatly improve the state-of-the-art positron yield. The P\textsuperscript{3} project is led by the Paul Scherrer Institute in Switzerland, and addresses the long-standing challenge faced by conventional injector facilities to generate, capture, and damp the emittance of high-current positron beam, which is a major limiting factor for the feasibility of future electron-positron colliders. P\textsuperscript{3} follows the same basic principles as its predecessors, utilizing a positron source driven by pair-production and an RF linac with a high-field solenoid focusing system. However, it incorporates pioneering technology, such as high-temperature superconducting solenoids, that can outperform significantly the present positron capture efficiency rates. The P\textsuperscript{3} experiment will be hosted at PSI's SwissFEL, and will serve as the positron source test facility of CERN's FCC-ee. This paper outlines the concept, technology, infrastructure, physics studies and diagnostics of P\textsuperscript{3}.
Paper: TUPC50
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC50
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
TUPC52
Secondary beam line efficiency studies at the CERN PS East Experimental Area
1122
The East Area at the Proton Synchrotron has undergone extensive renovations, marking a significant milestone in its more than 55-year history as one of CERN’s enduring facilities for experiments, beam tests, and irradiation. This facility, which serves over 20 user teams for about 200 days annually, now boasts an enhanced infrastructure to cater to future beam test and physics requirements. It also features new beam optics that ensure a better transmission and purity of the secondary beams, with the addition of pure electron, hadron, and muon beams. With this contribution, we present the ongoing performance studies underway following the implementation of the East Area secondary beamlines in the BDSIM (Beam Delivery Simulation) Monte Carlo simulation software. Using BDSIM, the impact on the transmission, purity, and overall efficiency of the secondary beams is assessed to the measured performance, paving the way for possible additional modifications and/or further upgrades.
Paper: TUPC52
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC52
About: Received: 13 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
TUPC64
Predicting the multi-turn channelling efficiency of a 7 mrad-bending silicon crystal in the Large Hadron Collider for TeV-range proton energies
1144
A double-crystal fixed-target experiment is planned for installation in CERN’s Large Hadron Collider (LHC). This experiment features a 7 cm-long bent silicon crystal, with 7 mrad bend-angle to deflect particles produced by proton interactions with a target. As this crystal is more than an order of magnitude longer than any other installed in the LHC, it requires specific characterization, alignment, and testing. Testing will begin using the LHC’s proton beam at different beam energies, before considering studies of interactions with particles out scattered from a target. Using a particle tracking program, we simulate the expected signals from the angular alignment of this unique crystal with multi-turn halo particles of the circulating LHC proton beam. A range of beam energies is considered to evaluate the performance, as particles with a spread of energies are anticipated downstream of the target following the interactions of the 7 TeV proton beams in the final experiment. The simulation results predict the crystal’s multi-turn efficiency as a function of energy and serve as a benchmark for the commissioning process to integrate this long crystal into the LHC.
Paper: TUPC64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC64
About: Received: 09 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
TUPC71
Optics rematching between TT24 and P42 primary beam lines within the HI-ECN3 study project at CERN
1172
The High Intensity ECN3 (HI-ECN3) study project aims to increase the intensity of the proton beam delivered to a new experimental facility housed in the ECN3 underground cavern in CERN’s North Area up to the ~4e+13 ppp (protons per pulse) and up to ~4e+19 POT (protons on target) per year. The increase necessitates upgrades of the primary beam transfer lines coming from SPS directly to the new Target Complex upstream of ECN3. In this work we describe the modifications to the primary beam line optics that allow the transfer of the beam to the HI-ECN3 facility in two scenarios: shared (beam is split between the three existing production targets) and dedicated (beam goes directly to the target serving ECN3). An optimization study is presented to reduce the sensitivity of the beam optics to errors and minimize the effects of the beam’s interaction with material when transiting the existing target area between TT24 and P42, whilst respecting the different constraints needed to share the beam between ECN3 and the rest of the North Area and permit a vertical trajectory bump around the target serving EHN1.
Paper: TUPC71
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC71
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPC73
Beam loss studies for the P42 beamline at the CERN SPS north area
1180
The P42 beamline transports 400 GeV protons from the CERN SPS between the T4 and T10 targets. A secondary particle beam is produced at the T10 target and transported along the K12 beamline to the experimental cavern ECN3, presently housing the NA62 experiment. In the context of the Physics Beyond Colliders (PBC) study, an increase of the beam intensity in P42 has been considered to provide protons to a future high-intensity fixed-target experiment in ECN3. For both its present usage and especially for the intensity upgrade, it is important to reduce beam losses to a minimum to decrease environmental radiation levels and protect equipment. In this study, simulations of P42 with the Monte Carlo software BDSIM, are used to demonstrate that beam losses in P42 are primarily driven by particle-matter interactions in material intercepted by the beam. The distribution of the simulated losses is compared to doses measured along the beamline in radioprotection surveys and beam loss monitors. Future mitigation strategies to reduce beam losses are then discussed and evaluated.
Paper: TUPC73
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC73
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPC74
Characterisation of the optics of the TT24 and P42 beamlines in the CERN SPS north area
1184
400 GeV protons extracted from the CERN SPS are transported to the T4 target via the TT20 transfer line. The P42 beamline then transports the protons that did not interact in the T4 target to the T10 target. During operation in 2021 and 2022, higher than expected beam losses were measured, in addition to an increased beam spot size that had previously been observed. It was suspected that the optics between TT24 and P42 might not be well matched but due to a lack of instrumentation this was not confirmed. The recent installation of additional beam profile monitors (BSG) in the P42 beamline has allowed the present optics to be evaluated for the first time. In addition, magnet response functions have been measured and updated. A kick response study was performed using corrector dipoles to kick the beam with the subsequent displacement measured on the BSGs. The dependence between the kick and the beam position was used to fit a MADX optics model of TT24 and P42. Quadrupole scans were then performed to determine the initial conditions of the model. These results are presented in this paper.
Paper: TUPC74
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC74
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
TUPC78
Normalized uniformity-based common points layout optimization method for alignment installations
1196
The alignment installation work of Hefei Advanced Light Facility (HALF) is usually carried out in tunnels. Calculate the key component points to the global coor-dinate system through coordinate conversion, and accu-rately adjust them to the corresponding coordinate values for alignment and installation. However, long and narrow tunnels can easily cause dense common points, resulting in a loss of accuracy. Therefore, to quickly and accurately obtain the coordinate transformation parameters, this article proposes a common point selection method with uniformity normalization and selects the optimal com-mon points set based on the normalized uniformity in different directions. The feasibility of this method was verified based on experimental data. The results show that the conversion parameters solved by this method are more accurate, avoiding accuracy loss due to aggregation in a certain direction, and are suitable for long and narrow tunnels.
Paper: TUPC78
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC78
About: Received: 14 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPC79
Future upgrades for GANIL
1199
We will present the plans and ideas for the next upgrades as discussed for the GANIL-SPIRAL2 installation in France. Recently, a report "French roadmap for Nuclear, Particle, and Astroparticle physics, along with associated technical developments and applications." were produced. It particularly focused to “The future of GANIL”. This was further enriched through extensive discussions by an international expert committee led by Michel SPIRO. These endeavors aim to push the boundaries of research capabilities at GANIL-SPIRAL2 during the next decades. Since the starting up in 1983, 40 years ago, successful exploitation with stable beams at the cyclotrons of GANIL, the laboratory has continuously evaluated and enhanced its capabilities. The latest evolution was the starting up of the SPIRAL2 facility. Today GANIL, with its state-of-the-art installations, including cyclotrons, a linear accelerator, and experimental areas, presents unique opportunities for cutting-edge research. The next upgrades under discussion are to be presented. Involving increasing beam intensities, exploring new exotic nuclei. Endeavors that aim to push the boundaries of research capabilities at GANIL-SPIRAL2 for the next decades.
Paper: TUPC79
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC79
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
TUPC83
A high-power positron converter based on a recirculated liquid metal in-vacuum target
1210
An effective high-power positron converter for electron linear accelerators is not currently available from industry. A commercial source would allow research institutes to have ready access to high-brightness positrons for a wealth of material science, nuclear, particle, and accelerator physics projects. Xelera Research LLC has designed, built, and tested a prototype free-surface liquid-metal (GaInSn) jet converter. Free-surface liquid-metal jets allow for significantly greater electron beam power densities than are possible with solid targets. Higher power densities lead to greater positron production and, importantly, allow continuous wave (CW) operation. A modified version of the GaInSn converter prototype is planned to be constructed and tested at the Thomas Jefferson National Accelerator Facility.
Paper: TUPC83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC83
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
TUPC84
Novel positron beam generation based on Shanghai Laser Electron Gamma Source
1214
The Shanghai Light Source has been operated since 2009 to provide synchrotron radiation to 40 beamlines of the electron storage ring at a fixed electron energy of 3.5 GeV. The Shanghai Laser Electron Gamma Source (SLEGS) is approved to produce energy-tunable gamma rays in the inverse Compton slant-scattering of 100 W CO2 laser on the 3.5 GeV electrons as well as in the back-scattering. SLEGS can produce gamma rays in the energy range of 0.66 – 21.7 MeV with flux of 1e+5 – 1e+7 photons/s*. A positron source based on SLEGS is designed to produce positron beams in the energy range of 3 – 16 MeV with a flux of 1e+5 /s and energy resolution of ~7% with an aperture of 10 mm collimator. The positron generated has been simulated by GEANT4, uses a SLEGS gamma injected into a single-layer target, and a dipole magnet deflect positrons. Based on the energy-tunable SLEGS gamma rays, the optimized parameters at each gamma energy were simulated to obtain an energy-tunable positron source. We have confirmed positron generation in the commissioning. We plan to construct the positron source in the summer of 2024. We present the positron source based on results of simulation and test measurements.
Paper: TUPC84
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC84
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
TUPR21
Influence of deposition parameters on the microstructure and vacuum properties of NEG-coated vacuum chamber
1460
The non-evaporable getter (NEG) coatings provide conductance-free evenly distributed pumping, low thermal outgassing rates, second electron yield, and photon-and electron-stimulated desorption. NEG coatings are crucial for achieving ultrahigh vacuum in fourth-generation diffraction storage ring vacuum systems. TiZrV thin films were deposited onto elongated CuCrZr pipes for this investigation. The influence of various deposition parameters on the microstructure and vacuum properties of NEG coatings was investigated. The microstructure, surface topography, roughness, and phase composition were evaluated using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Atomic Force Microscope (AFM), and X-ray Diffraction (XRD), respectively. Furthermore, the activation performance of the TiZrV films was investigated in relation to deposition parameters.
Paper: TUPR21
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR21
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
TUPR81
Simulation study of ion beam used to produce Mo-99
1604
An 820 mA CW positive ion source is being developed to produce Mo-99 using the fusion of deuterium and tritium ion beams on a rotating target to produce neutrons for use in the production of radiopharmaceuticals. The ion source consists of an RF plasma source, a multi-aperture extractor, and 300 kV accelerating column. This paper will describe a simulation study of the beam through the extractor grid and the accelerator to the target. The uniformity of beam distribution on the target is an important aspect of the simulation.
Paper: TUPR81
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR81
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
TUPS27
Progress towards the completion of the proton power upgrade project
1691
The Proton Power Upgrade project at the Spallation Neutron Source at Oak Ridge National Laboratory will increase the proton beam power capability from 1.4 to 2.8 MW. Upon completion in early 2025, 2 MW of beam power will be available for neutron production at the existing first target station (FTS) with the remaining beam power available for the future second target station (STS). The project has installed seven superconducting radio-frequency (RF) cryomodules and supporting RF power systems to increase the beam energy by 30% to 1.3 GeV, and the beam current will be increased by 50%. The injection and extraction region of the accumulator ring are being upgraded, and a new 2 MW mercury target has been developed along with supporting equipment for high-flow gas injection to mitigate cavitation and fatigue stress. The first four cryomodules and supporting systems were commissioned in 2022-2023 and supported neutron production at 1.05 GeV, 1.7 MW with high reliability. The first-article 2 MW target was operated successfully for approximately 4400 MW-Hours over two run periods. The long outage began in August 2023 for installation of the remaining technical equipment and construction of the Ring-to-Target Beam Transport tunnel stub that will enable connection to the STS without interrupting operation of the FTS. The upgrade is proceeding on-schedule and on-budget, and resumption of neutron production for the user program is planned for July 2024.
Paper: TUPS27
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS27
About: Received: 30 Apr 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
TUPS44
Multiphysics simulations of thermal shock testing of nanofibrous high power targets
1758
Increase of primary beam power for neutrino beam-lines leads to a reduced lifespan for production targets. New concepts for robust targets are emerging from the field of High Power Targetry (HPT); one idea being investigated by the HPT R&D Group at Fermilab is an electrospun nanofiber target. As part of their evaluation, samples with different densities were sent to the HiRadMat facility at CERN for thermal shock tests. The samples with the higher density, irradiated under a high intensity beam pulse, exhibit major damage at the impact site whereas those with the lower density show no apparent damage. The exact cause of this failure was unclear at the time. In this paper, we present the results of multiphysics simulations of the thermal shock experienced by the nanofiber targets that suggest the failure originates from the reduced permeability of the high density sample to air flow. The air present in the porous target expands due to heating from the beam, but is unable to flow freely in the high density sample, resulting in a larger back pressure that blows apart the nanofiber mat. We close with a discussion on how to further validate this hypothesis.
Paper: TUPS44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS44
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS45
Bayesian optimization scheme for the design of a nanofibrous high power target
1762
High Power Targetry (HPT) R&D is critical in the context of increasing beam intensity and energy for next generation accelerators. Many target concepts and novel materials are being developed and tested for their ability to withstand extreme beam environments; the HPT R&D Group at Fermilab is developing an electrospun nanofiber material for this purpose. The performance of these nanofiber targets is sensitive to their construction parameters, such as the packing density of the fibers. Lowering the density improves the survival of the target, but reduces the secondary particle yield. Optimizing the lifetime and production efficiency of the target poses an interesting design problem, and in this paper we study the applicability of Bayesian optimization to its solution. We first describe how to encode the nanofiber target design problem as the optimization of an objective function, and how to evaluate that function with computer simulations. We then explain the optimization loop setup. Thereafter, we present the optimal design parameters suggested by the algorithm, and close with discussions of limitations and future refinements.
Paper: TUPS45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS45
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
TUPS54
Bayesian optimization for beam centroid correction at ISAC
1786
Beam tuning in a post-accelerator facility such as TRIUMF’s ISAC involves a considerable amount of overhead and often leads to tunes which diverge from the theoretical optimum for the system, introducing undesirable effects such as aberrations or chromatic couplings. Bayesian Optimization for Ion Steering (BOIS) has been developed and tested to perform centroid corrective steering, after the transverse optics have been set to theory, in a method which is fully online and easy to deploy. Naïve multi-objective adaptations, scaleBOIS and boundBOIS have been introduced to perform corrective transverse steering with minimal transverse fields . Tests in the low-energy electrostatic transport beamlines at ISAC I performed comparably to human operators. This work holds promise for enhancing the efficiency and reliability of beam delivery via autonomous tuning methods, supporting TRIUMF's scientific mission.
Paper: TUPS54
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS54
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS55
Slow extracted spill ripple control in the CERN SPS using adaptive Bayesian optimisation
1790
The CERN Super Proton Synchrotron (SPS) offers slow-extracted, high-intensity proton beams at 400 GeV/c for 3 fixed targets in the CERN North Experimental Area (NA) with a spill length of about 5 seconds. Since first commissioning in the late seventies, the NA has seen a steady increase in users, many of which requiring improved spill quality control. Slow extraction is sensitive to small perturbations with the effect of reduced spill quality. While some of these effects have been addressed in recent years, continuous compensation of intensity fluctuations at 50 Hz harmonics originating from power converter ripple has been particularly difficult to achieve. In 2023, the deployment of two techniques - "Empty-Bucket Channeling" and active control with Adaptive Bayesian Optimization – resulted in a significant suppression of these intensity modulations. This paper focuses on using Adaptive Bayesian Optimization for 50 Hz harmonic control. The chosen algorithm is described, together with details of integration in the CERN control system. The 2023 results are presented and complemented with an overview of the next steps.
Paper: TUPS55
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS55
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
TUPS62
The reinforcement learning for autonomous accelerators collaboration
1812
Reinforcement Learning (RL) is a unique learning paradigm that is particularly well-suited to tackle complex control tasks, can deal with delayed consequences, and can learn from experience without an explicit model of the dynamics of the problem. These properties make RL methods extremely promising for applications in particle accelerators, where the dynamically evolving conditions of both the particle beam and the accelerator systems must be constantly considered. While the time to work on RL is now particularly favorable thanks to the availability of high-level programming libraries and resources, its implementation in particle accelerators is not trivial and requires further consideration. In this context, the Reinforcement Learning for Autonomous Accelerators (RL4AA) international collaboration was established to consolidate existing knowledge, share experiences and ideas, and collaborate on accelerator-specific solutions that leverage recent advances in RL. Here we report on two collaboration workshops, RL4AA'23 and RL4AA'24, which took place in February 2023 at the Karlsruhe Institute of Technology and in February 2024 at the Paris-Lodron Universität Salzburg.
Paper: TUPS62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS62
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS65
Radiographic source prediction for linear induction accelerators using machine learning
1824
The penetrating radiography provided by the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility is a key capability in executing a core mission of the Los Alamos National Laboratory (LANL). Historical data from the two DARHT Linear Induction Accelerators (LIAs), built as hdf5 data structures for over a decade of operations, are being used to train machine learning models to assist in beam tuning. Adaptive machine learning (AML) techniques that incorporate physics-based models are being designed to use noninvasive diagnostic measurements to address the challenge of predicting the radiographic spot size, which depends on the time variation in accelerator performance and the density evolution of the conversion target. Pinhole collimator images recorded by a gamma ray camera (GRC) provide a direct measurement of the radiograph imaging quality but are not always available. A framework is being developed to feed results of these invasive measurements back into the accelerator models to provide virtual diagnostic measurements when these measurements are not available.
Paper: TUPS65
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS65
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
TUPS69
SRF cavity instability detection with machine learning at CEBAF
1835
During the operation of the Continuous Electron Beam Accelerator Facility (CEBAF), one or more unstable superconducting radio-frequency (SRF) cavities often cause beam loss trips while the unstable cavities themselves do not necessarily trip off. The present RF controls for the legacy cavities report at only 1 Hz, which is too slow to detect fast transient instabilities during these trip events. These challenges make the identification of an unstable cavity out of the hundreds installed at CEBAF a difficult and time-consuming task. To tackle these issues, a fast data acquisition system (DAQ) for the legacy SRF cavities has been developed, which records the sample at 5 kHz. A Principal Component Analysis (PCA) approach is being developed to identify anomalous SRF cavity behavior. We will discuss the present status of the DAQ system and PCA model, along with initial performance metrics. Overall, our method offers a practical solution for identifying unstable SRF cavities, contributing to increased beam availability and facility reliability.
Paper: TUPS69
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS69
About: Received: 13 May 2024 — Revised: 16 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
TUPS74
Breaking new ground in data-intensive science: first insights from the LIV.INNO center for doctoral training
1850
LIV.INNO is a new initiative which will train around 40 PhD students over three cohorts. It fosters innovation in data-intensive science, serves as a dynamic platform for collaboration between leading research organizations and the next generation of scientists. Within this context, several projects focus on research that intersects between data science and particle accelerator research. This contribution showcases the early results from studies into optical transition radiation diagnostics for low energy ion beams, tailored Monte Carlo simulations for reactor ap-plications, and the reconstruction of the transverse beam distribution using machine learning. These early insights highlight the many benefits from collaborative R&D in data-rich accelerator environments. A summary of the training events offered by the center is also given.
Paper: TUPS74
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS74
About: Received: 11 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
WECN1
Muon production target at J-PARC
1941
A pulsed muon beam has been generated by a 3-GeV 333-microA proton beam on a muon target made of graphite at J-PARC, Materials and Life Science Experimental Facility. The first muon beam was successfully generated in 2008, and 300-kW proton beam has been operated by a fixed target till 2014. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, had been developed. The muon rotating target #1 was installed in 2014 and had operated for five years until 2019. The rotating target #2 has stably operated at 830 kW until now in 2023. 1-MW operation was also completed for 32hours in 2020. Simultaneously, in the COMET experiment to explore the muon-electron conversion process, 8 GeV proton beam with an intensity of 3.2 kW in Phase 1 and 56 kW in Phase 2 will irradiate targets in a superconducting solenoid magnet. The MLF 2nd target station is a future project where 3 GeV protons will irradiate a tungsten target to produce high-brightness neutrons and muons. In this presentation, the status and future prospect of the muon target at J-PARC MLF MUSE, the COMET target, and MLF 2nd target station will be introduced.
Paper: WECN1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WECN1
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
WECN2
Novel materials for next-generation accelerator target facilities
1945
As beam power continues to increase in next-generation accelerator facilities, high-power target systems face crucial challenges. Components like beam windows and particle-production targets must endure significantly higher levels of particle fluence. The primary beam’s energy deposition causes rapid heating (thermal shock) and induces microstructural changes (radiation damage) within the target material. These effects ultimately deteriorate the components’ properties and lifespan. With conventional materials already stretched to their limits, we are exploring novel materials including High-Entropy Alloys and Electrospun Nanofibers that offer a fresh approach to enhancing tolerance against thermal shock and radiation damage. Following an introduction to the challenges facing high-power target systems, we will give an overview of the promising advancements we have made so far in customizing the compositions and microstructures of these pioneering materials. Our focus is on optimizing their in-beam thermomechanical and physics performance. Additionally, we will outline our imminent plans for in-beam irradiation experiments and advanced material characterizations.
Paper: WECN2
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WECN2
About: Received: 13 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPC42
Pulsed laser deposition assisted growth of alkali-based photocathodes
2057
Alkali-based semiconductor photocathodes are widely used as electron sources and photon detectors. The prop-erties of alkali-based semiconductor materials such as crystallinity and surface roughness fundamentally de-termine the performance merits like quantum efficiency and thermal emittance. In BNL, pulsed laser deposition (PLD) was utilized to assist the growth of alkali-based photocathode materials, providing precise control of material growth and improving film quality. In the pre-sented work, films prepared with thermal and PLD sources are compared. The film quality of K2CsSb, Cs3Sb and Cs2Te grown with PLD assisted technique are reported.
Paper: WEPC42
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC42
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPC46
Development of spin polarized electron sources based on III-V semiconductors at BNL
2064
Photocathodes capable of producing spin polarized electrons beams are required for both high energy and nuclear physics experiments. In this work, we describe in detail the commissioning of a new apparatus for photocathode characterization which includes a retarding field Mott polarimeter for the measure of photoelectron spin polarization. We will illustrate the design of superlattice structures equipped with Distributed Bragg Reflector and present the measurements of spin polarization and quantum efficiency of emitted electrons from these structures.
Paper: WEPC46
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC46
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPG36
Mechanical design of the thermal imaging system for the FRIB target
2287
As the Facility for Rare Isotope Beams (FRIB) ramps up to 400 kW, a thermal imaging system (TIS) is essential to monitor the beam spot on the production target. The TIS is an array of mirrors and a telescope in the target vacuum chamber; this relays the image through a window to the optics module outside the chamber. The design presented many challenges from alignment, to remote installation of the TIS and integrated shielding, and repeatable re-installation of the mirror array and optics module. The target TIS has been in operation since 2021 and supports FRIB operations for secondary beam production, with incident power up to 10 kW. The temperatures seen validate the expected temperatures from analysis. The mechanical design of the FRIB target TIS is presented here as well as initial performance.
Paper: WEPG36
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG36
About: Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPG66
Effects of delta ray electrons on measurement uncertainties of harp system
2378
A harp system, which is a multi-wire beam profile monitoring (MWPM) system, is planned upstream of the spallation target to make in situ calibration of beam current density configuration on the target along with beam imaging from luminescent coating on the beam entrance window at the Second Target Station (STS) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). This beam interception-based beam diagnostics system on the target will be used to ensure that the maximum beam loads on the target are within the design range during neutron production. Current design of the harp consists of three layers of measurement wires each of which is sandwiched between voltage biasing wire planes. The signal obtained from each measurement wire layer is disturbed by secondary electrons (SE) and delta rays produced by beam-matter interactions in neighboring wires and ionization of residual gases in accelerator vacuum. While the backgrounds from SE can be suppressed by voltage biasing, the delta-ray electrons with kinetic energies above keV ranges overcome the electric potential bias. In this paper, we study the effects of delta-rays on the measurement uncertainties of MWPM using the particle transport simulation code FLUKA. Furthermore, the cases where the harp system is installed in the proximity of a large delta ray sources such as proton beam window or in the core vessel filled with sub-atmospheric gas have been studied.
Paper: WEPG66
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG66
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPG83
Development of an active beam-stabilization system for electrofission experiments at the S-DALINAC
2411
The r-process fission cycle terminates the synthesis of heavy elements in binary neutron-star mergers. Fission processes of transuranium nuclides will be studied in electrofission reactions at the thrice-recirculating electron accelerator S-DALINAC*. Due to the minuscule fissile target, the experimental setup requires an active beam-stabilization system with high accuracy and a beam position resolution in the sub-millimeter range. Requirements and concepts for this system regarding beam diagnostics elements, feedback control and readout electronics will be presented. The usage of a cavity beam position monitor and optical transition radiation screens to monitor the required beam parameters will be discussed in detail. Additionally, various measurements including a study of beam stability performed in the injector section of the S-DALINAC to assess requirements and limits for the beam-stabilization system will be presented. Finally, the application of advanced machine learning methods, such as neural networks and agent-based reinforcement learning, will be discussed.
Paper: WEPG83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG83
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
WEPR24
Initial design of a proton complex for the Muon Collider
2528
The proton complex is the first piece in the Muon Collider, it comprises a high power acceleration section, a compressor and a target delivery system. For the International Muon Collider Collaboration we are investigating the possibility of having a full energy 5-GeV linac followed by an accumulator and a compressor ring and finally a target delivery system. In this paper we present the initial studies for the complex and derived initial beam parameters at each interface.
Paper: WEPR24
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR24
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
WEPR28
Radiation load studies for the proton target area of a multi-TeV muon collider
2544
Muon production in the multi-TeV muon collider studied by the International Muon Collider Collaboration is planned to be performed with a high-power proton beam interacting with a fixed target. The design of the target area comes with a set of challenges related to the radiation load to front-end equipment. The confinement of the emerging pions and muons requires very strong magnetic fields achievable only by superconducting solenoids, which are sensitive to heat load and long-term radiation damage. The latter concerns the ionizing dose in insulation, as well as the displacement damage in the superconductor. The magnet shielding design has to limit the heat deposition and ensure that the induced radiation damage is compatible with the operational lifetime of the muon production complex. Finally, the fraction of the primary beam passing through the target unimpeded poses a need for an extraction channel. In this study, we use the FLUKA Monte Carlo code to assess the radiation load to the solenoids, and we explore the possible spent proton beam extraction scenarios taking into account the constraints stemming from the beam characteristics and the required magnetic field strength.
Paper: WEPR28
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR28
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
WEPR36
Low-energy muon and muonium beam source at Fermilab
2568
We describe a high-efficiency source of muonium that can be transported as a beam in vacuum provides opportunities for fundamental muon and precision physics measurements such as sensitive searches for symmetry violation. Although PSI is currently the world leader, the intense 800-MeV PIP-II linac beam at Fermilab could provide world-class low-energy muon and muonium beams, with unparalleled intensity, driving the next generation of precision muon-based physics experiments at the intensity frontier. However, it is critical to initiate the prerequisite R&D now to prepare for the PIP-II era. A low-energy secondary muon line recently installed in an operating facility (the MeV Test Area, which utilizes the intense 400-MeV Fermilab Linac beam) could support the required R&D, and potentially compete for new physics in the immediate term, if approved. This beamline was developed for μ– and will need to be re-optimized for surface μ+ production and transport, making it also suitable for muon spin rotation physics––a unique research and industrial application for which no U.S. facility exists, and whose facilities are oversubscribed worldwide.
Paper: WEPR36
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR36
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPR37
The European Spallation Source neutrino super beam
2571
The discovery of neutrino Charge-Parity Violation (CPV) became an important candidate to explain the matter dominance in the Universe. The goal of the ESSnuSB project is to discover and measure neutrino CPV with unprecedented sensitivity*. The construction of the European Spallation Source, ESS, the world’s most intense proton source, represents an outstanding opportunity for such project to take place. ESSnuSB has been granted from EU in the framework of H2020 (2018-2022) and Horizon Europe (2023-2026) to make Design Studies. The aim of the first Design Study was to demonstrate that the ESS linac can be used to generate an intense neutrino beam by doubling its average beam power and that a megaton water Cherenkov detector can be constructed in a mine 360 km from ESS providing detection of neutrinos at the 2nd neutrino oscillation maximum. A CDR** has been published in which it is shown the high physics performance to discover CPV and precisely measure the violating parameter δCP. For this, the modification for neutrino generation to compress the proton pulse length from 2.86 ms, to 1.3 μs has been studied. The second, ongoing, Design Study, ESSnuSB+, is devoted to neutrino cross-section measurements relevant to the CPV discovery. Two facilities are proposed, a low energy nuSTORM (muons decaying to neutrinos in a race-track storage ring) and low energy ENUBET (pions decaying to a muon and a neutrino, allowing the neutrino beam to be monitored by detection of the decay muon).
Paper: WEPR37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR37
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPR39
Proposed muon collider R&D at SNS
2578
Generation of a muon beam at a Muon Collider requires relatively short, high-charge proton bunches. They are produced in a high-average-power proton driver by first accumulating a proton beam from a super-conducting linac, then bunching the beam and finally compressing and combining the bunches into a single high-intensity proton pulse. All of these beam formation stages involve handling of unprecedentedly high beam charges. Validation of these intricate beam manipulations requires better understanding of extreme space-charge effects and experimental demonstration. A facility perhaps most closely resembling the proton driver configuration and beam parameters is the Spallation Neutron Source (SNS) accelerator complex at Oak Ridge National Laboratory (ORNL). Considering the energy scaling of the space-charge parameters, many of the beam formation steps planned for the proton driver can be experimentally checked at the SNS at the relevant space-charge interaction levels. This paper discusses potential proton driver and other muon-collider-related R\&D at the SNS.
Paper: WEPR39
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR39
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPS48
Comparison on the superconducting properties of Nb and NbTiN thin films produced by both HiPIMS and bipolar HiPIMS
2802
Most superconducting thin films found on SRF cavity are generally produced through magnetron sputtering using niobium (Nb) as target. Yet, this technique can still be improved as the resulting film lack in efficiency. Alternative materials such as NbTiN could potentially be used with significant improvement compared to pure Nb films. Here, we report the use of both high-power impulse magnetron (HiPIMS) and bipolar HiPIMS to produce superconducting thin films, with a particular attention on the optimal conditions to enhance the film growth highly dependent on the pressure and power conditions. We used both mass spectroscopy and optical emission spectroscopy to analyze the plasma chemistry providing information on the mass/energy of the ions formed.
Paper: WEPS48
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS48
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
WEPS68
Development and test of a large-aperture Nb3Sn cos-theta dipole coil with stress management
2858
The stress-managed cos-theta (SMCT) coil is a new concept which was proposed and is being developed at Fermilab in the framework of US Magnet Development Program (US-MDP) for high-field and/or large-aperture accelerator magnets based on low-temperature and high-temperature superconductors. A 120-mm aperture two-layer Nb3Sn SMCT dipole coil has been developed at Fermilab to demonstrate and test the SMCT concept including coil design, fabrication technology and performance. The first SMCT demo coil was fabricated and assembled with 60-mm aperture Nb3Sn coil inside a dipole mirror configuration and tested separately and in series with the insert coil. This paper summarizes the design, parameters, and quench performance of the 120-mm aperture SMCT coil in a dipole mirror configuration.
Paper: WEPS68
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS68
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPS84
CERN accelerates sustainability
2906
CERN is pursuing several initiatives to reduce its impact on the environment through an integrated approach to address all the objectives set by the relevant United Nations (UN) Sustainable Development Goals (SDG). In particular CERN is committed to respect the net-zero paradigm for future machines and has established a Sustainable Accelerators Panel to harmonize the approach to sustainability of the various studies for future accelerators. In this paper we will describe the efforts taken in managing responsibly our technical installations and the process we are setting up to perform the lifecycle assessment of the different future projects to better understand the main drivers of CO2 emissions in order to minimize them by design.
Paper: WEPS84
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS84
About: Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THBN1
Progress in the design of the magnets for a Muon Collider
2956
Magnets have been identified as one of the critical technologies for a proton-driven Muon Collider. Within the scope of the International Muon Collider Collaboration we have progressed in the review of requirements, and the development of concepts towards the initial engineering of several of the most critical magnets identified from our previous work. In this paper we present an update of the accelerator magnet configuration for all the parts of the Muon Collider complex, from muon production to collision. We then give details on the specific technologies that have been selected as baseline. Overall, it is clear that a Muon Collider requires very significant innovation in accelerator magnet technology, mostly relying on the success of HTS magnet development. We include in our description a list of options and development staging steps intended to mitigate technical, cost and schedule risk.
Paper: THBN1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THBN1
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THBN3
Lifetime of non-evaporable getter thin films over repeated activation
2960
Non-evaporable getter (NEG) coatings are used in accelerator beamlines to create an area of distributed pumping, allowing less external pumps to be installed, and smaller diameter tubes to be used. Both giving way to greater space for magnet arrays to better control the beam within, allowing more efficient accelerators to be produced. To work, NEG coatings must be activated by heating to a set temperature for 24 hours. This temperature depends on the properties of the NEG coating, and requirements of the system. The coating is then able to pump residual gasses out of the vacuum system, until it becomes saturated and will once again need activating. Over its a lifetime, a NEG coating will be activated and saturated numerous times, each time reducing the available sites for molecules to diffuse to during activation. Thus, eventually, the NEG coating will lose its capability, and will no longer be able to reach the same pumping capacity from the same activation regime. This study investigates the limits of NEG lifetimes, looking at the effect of multiple activations on the same coating. Samples of diameter 35 mm and length 50 cm were characterized by CO and H2 injections, from which the sticking probabilities and NEG coating capacity could be obtained. The samples were activated numerous times to see any degradation of the NEG coating. The results will be presented and discussed at IPAC 2024.
Paper: THBN3
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THBN3
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPC11
Beam trajectory influence on dispersion and uniform beams at NASA Space Radiation Laboratory’s beamline
2985
The AGS Booster synchrotron at Brookhaven National Laboratory delivers resonant slow extracted beams to a fixed target beamline called the NASA Space Radiation Laboratory (NSRL). Experimenters at the NSRL require uniformly distributed radiation fields over large area to simulate the cosmic ray space radiation environment. The facility generates the uniform distribution using a pair of octupole magnets in the transport line. The beamline is designed to produce a achromatic optics through the octupoles and to the target. However, the dispersion function depends on the trajectory of the beam as it is transported out of the booster and into the NSRL beamline. The dependence on this trajectory has not been previously studied. In this paper, we describe a new model we have developed to study this effect and show measurements to compare to our simulations.
Paper: THPC11
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC11
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPC29
Simulation of the LANSCE PSR injection and extraction beamlines
3046
The Los Alamos Neutron Science Center (LANSCE) accelerator delivers high intensity proton beams for fundamental science and national security experiments since 1972. The Proton Storage Ring (PSR) accumulates a full 625-us macro-pulse of proton beam and compresses it into a 290-ns long pulse, delivering an intense beam pulse to the Lujan Neutron Science target. The proposed LANSCE Modernization Project (LAMP) is evaluating necessary upgrades to the accelerator that will guarantee continuous beam operations in the next decades. Upgrades to the PSR and its high-energy injection and extraction beamlines are being considered to handle the higher beam intensity enabled by the LAMP upgrades in the front-end. For the PSR upgrades studies, we are building models of the PSR injection and extraction lines in codes which include space charge calculations like Elegant and Impact. These better illustrate the beam dispersion and the beam halo in the high-energy transport. This work describes the LANSCE PSR injection and extraction lines and the corresponding simulation models. The models are compared to available beam diagnostics data where available.
Paper: THPC29
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC29
About: Received: 16 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPG03
Temporal profile shaping for a dispersive section using a multi-objective genetic algorithm
3247
Our research focuses on the design of a beamline. Due to the numerous beamline components involved, without strict optimization of each component's parameters, the transmitted temporal profile of beam may distort, failing to meet the expected requirements. Additionally, different initial temporal profile of the beam will undergo longitudinal shaping during transmission through the beamline. Therefore, we aim to determine the combination of initial beam temporal profile at the cathode and the parameters of the beamline components based on the specific beam distribution at the exit. We propose the application of an improved multi-objective genetic algorithm to solve this problem. Through multiple optimization iterations for a given temporal profile, our algorithm consistently identifies multiple suitable combinations of initial beam temporal profile and beamline component parameters to produce the desired specific temporal profile of the beam.
Paper: THPG03
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG03
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPG37
Parallel quadrupole modulation for fast beam-based determination of magnet centers
3341
A method to simultaneously determine the magnetic centers of multiple magnets with beam-based measurements is proposed. Similar to the quadrupole modulation system (QMS) method that is widely used for beam-based alignment measurement, the strengths of the group of selected magnets are modulated. The orbit shifts induced by the modulation are used to deduce the kicks applied at the magnet locations with the help of orbit response matrix calculated with the lattice model. By varying the beam orbit at the magnets, with a pair of corrector of magnets or local orbit bumps, and repeating the modulation measurement at each orbit, the magnet centers can be determined through fitting the calculated kicks versus the beam orbit. Demonstration of the method on a storage ring is presented. The method can also been applied to nonlinear magnets.
Paper: THPG37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG37
About: Received: 10 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPG62
FRIB target thermal image processing for accurate temperature mapping
3409
The FRIB carbon disc target receives the primary beam at high power and produces rare isotope fragments. To avoid damaging the carbon disc target, it is rotated at 500 RPM and cooled. If these thermal management mechanisms fail, local temperatures on the target can increase to the point of material sublimation and structural failure. A thermal imaging camera was temperature calibrated and installed for the purpose of monitoring the target temperature map in real time. Various image processing strategies were deployed to improve the accuracy and usefulness of the resulting image. Processing stages include conversion from intensity to temperature, median filtering to remove dead pixels, and flat field correction to compensate for vignetting and edge effects.
Paper: THPG62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG62
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR06
Update on automated RF-conditioning utilizing machine learning
3488
The conditioning of room temperature cavities is an exhausting process. To prevent damage to the cavity and auxiliary equipment, this potentially long process needs constant supervision or extensive safety precautions. Additionally, the unpredictability of every new conditioning makes the development of effective classical algorithms difficult. To reduce the workload for everyone involved and to increase the efficiency of the conditioning process, it was decided to develop a machine learning algorithm with the goal of fully automated conditioning in mind. To reach this goal, it is planned to train the model on the data of already conducted conditionings of room temperature cavities, a virtual cavity and several more conditionings to be conducted soon. In this paper, the status of development, problems and challenges as well as the planned future progression shall be summarized.
Paper: THPR06
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR06
About: Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPR23
Towards mitigation of challenges in development of high power ISOL targets
3542
Worldwide Isotope Separation On-Line (ISOL) facilities face growing demand for producing and extracting high-purity exotic radioactive ion beams to serve nuclear physics, astrophysics and medical applications. In this technique, a particle beam interacts with a suitable target material to produce the desired isotopes through a combination of mechanisms like spallation, fragmentation and fission. TRIUMF has the world's highest-power ISOL facility—ISAC, handling 50 kW of proton beam power. The formidable challenge is to suitably handle the power deposited within the target material and maintain it at 2000°C to optimize the diffusion and effusion of the radioactive products. The intricacy of this design requires precise knowledge of the thermal properties of the target material. Typically, a blend of metallic carbide and graphite, these targets exhibit varying porosity and morphology and have effective thermal properties differing from individual constituent elements. To investigate these properties, a combined numerical-experimental approach is employed. This contribution discusses the optimization of target material sample size using numerical tools and outlines the exploration of thermal properties using an experimental apparatus, the Chamber for Heating Investigations (CHI), developed at TRIUMF.
Paper: THPR23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR23
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR24
Operation status of FRIB wedge systems and plan for power ramp up
3545
At the Facility for Rare Isotope Beams (FRIB) Advanced Rare Isotope Separator (ARIS), wedges are critical devices to achieve rare isotope beam production. Different ions experience a different amount of slowing down by the wedges, which leads to a spatial separation of ion species and enables separation/purification of the secondary isotope beam. As of December 2023, wedge systems have successfully supported FRIB commissioning for over 4,000 hours. Nearly 60 unique wedges were utilized which were implemented during 15 wedge maintenance periods. Material selection, unique wedge designs for beam tuning, secondary wedge design, and diagnostic wedge design developments will be discussed in this paper. The current wedge devices will support primary beam operations to a power level of 65 kW, as evaluated by analysis. Development is underway to achieve a higher power wedge system, capable of 400 kW with full remote handling capacity. Further development plans include a variable wedge system to reduce maintenance time and increase ARIS tuning flexibility.
Paper: THPR24
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR24
About: Received: 08 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR28
Upgrade of the PS booster-to-ISOLDE beam transfer line to facilitate an increase in proton driver energy
3552
Following the successful completion of the LHC Injectors Upgrade (LIU) project, since 2021 the Proton Synchrotron (PS) Booster has served the LHC injector chain with protons at an increased kinetic energy of 2 GeV. An upgrade of the ISOLDE (Isotope Separator On-Line DEvice) facility has long been considered to produce radioactive ion beams with a higher energy proton driver beam. A Consolidation and Improvements programme is presently underway to maintain ISOLDE’s position as a world-leading ISOL facility in the decades to come, with activities planned during the upcoming Long Shutdown 3 (LS3) (2026 - 28) and beyond. This contribution details a study to upgrade the beam line from the PS Booster to ISOLDE to operate between 1.4 and 2 GeV, and to increase the power of the proton driver in the future, assuming the replacement of the two beam dumps behind the facility’s production targets.
Paper: THPR28
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR28
About: Received: 13 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPR49
Electronic brachytherapy replacement of iridium-192
3625
The replacement of radionuclides used for cancer therapy with accelerators offers several advantages for both patients and medical staff. These include the elimination of: unwanted dose, specialized storage and transportation, and isotope production/replacement. Several electronic brachytherapy devices exist, and typically utilize an x-ray tube around 50 keV. These have primarily been used for skin cancer, though intraoperative applications are becoming possible. For several types of cancer, Iridium-192 has been the only brachytherapy treatment option, due to its high dose rate and 380 keV average energy. An accelerator-based alternative to Ir-192 has been developed, comprised of a 9.4 GHz, 1 MeV compact brazeless accelerator, narrow drift tube, and target. The accelerator is supported and positioned through the use of a robotic arm, allowing for remote delivery of radiation for internal cancer treatment. Preliminary results including dose rate and profile and plans for complete system demonstration will be presented.
Paper: THPR49
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR49
About: Received: 21 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR50
Nozzle design optimization for proton FLASH therapy
3629
An increasing number of accelerators are pursuing FLASH radiotherapy, which promises to mitigate unwanted damage to healthy tissues by applying ultra-high dose rates. To reach this extreme intensity regime, it is necessary to maximize the transmission through the exit nozzle, apart from increasing the accelerator’s output beam current. Simultaneously, the delivered beam properties must satisfy certain quality criteria that clinical applications require, such as transverse homogeneity. For this reason, a Python-based software has been developed to optimize the design of double-scattering beam nozzles. For a user-defined set of incoming beam parameters, output field requirements and available materials, the tool searches for the most efficient scattering conditions utilizing a graphical interface. These conditions are then translated into distances and shaping of the scatterers, involving a combination of high and low-density elements in a multiple-ring arrangement. A solution for the treatment of eye tumors has been successfully calculated, implemented, and tested with beam, in order to demonstrate the capabilities of this approach.
Paper: THPR50
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR50
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPR59
Using octupoles to create uniform electron beam produced by irradiation accelerators
3653
In contemporary radiotherapy, most accelerators employ the scatter technique to achieve a relatively uniform dose distribution of electron beams. However, this method often results in the loss of a substantial number of particles, leading to suboptimal efficiency. This paper proposes a method utilizing permanent magnet components to homogenize the beam, achieving both beam spreading and uniformity within a short distance without particle loss. The proposed homogenization beamline comprises two quadrupole magnets and two octupole magnets, ultimately yielding a square field with a side length of approximately 20 cm. The manuscript includes theoretical derivations and simulation validations, with the physical prototype currently under fabrication. Experimental results will be provided in future work.
Paper: THPR59
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR59
About: Received: 11 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPR60
Development of a multi-angle ultrahigh dose rate MV-level X-ray radiation system for FLASH radiotherapy clinical transformation
3656
In this work, MAX FLASH system (Multi-Angle ultrahigh dose rate megavolt-level X-ray radiation system for FLASH radiotherapy) is presented. This system consists of a rapid RF power distribution network and five linacs vertically installed at different coplanar angles. The distribution network can switch all power to one terminal linac between pulses. Electron beams are accelerated to 10 MeV with more than 400 mA peak currents in the high-performance linac and then convert into X-ray at a compact rotating target. The system aims for a compact FLASH radiotherapy clinical facility with a gantry 3 meter in diameter and 2.5 meter in length, which can be installed in most of hospital radiotherapy treatment rooms. There is reserved space in the gantry for a coplanar CBCT to implement for image guidance. The gantry can rotate to an optimized angle for a better conformality before radiation while the system remains stationary and switches the operating linac during radiation. Construction of the first system prototype, with 40 Gy/s dose rate at 80 cm source-axis-distance, is supposed to be finished in the summer of 2024.
Paper: THPR60
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR60
About: Received: 12 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPR64
Design of cyclotron-based in-vacuum material irradiation beamline at TINT
3671
A new cyclotron facility has been constructed at Thailand Institute of Nuclear Technology to provide proton beams with energy of 15-30 MeV for radioisotope production and material analysis. Due to requirements of particle induced X-ray emission (PIXE) and particle induced gamma-ray emission (PIGE) techniques that need a low-energy and low-intensity proton beam in range of 2-15 MeV and picoamperes as well as high detection sensitivity, the additional setup including an energy degrader, a collimator, a 30-degree separator magnet, and a slit, is employed for an in-vacuum irradiation beamline. In this work, we study the proton beam trajectory and beamline elements. The energy degrader made of aluminum has shown promising results in decreasing the beam energy while the energy spread of a secondary beam is significantly reduced by the following 30-degree separator magnet. Furthermore, the combination of the collimator and the slit lessens the beam current to proper values. To measure the proton beam current downstream, a copper Faraday cup will be used.
Paper: THPR64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR64
About: Received: 12 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
THPR68
Field shaping techniques in a spectrometer magnet in the presence of ferromagnetic shielding
3674
The Targeted Alpha Tumor Therapy and Other Oncological Solutions (TATTOOS) project at the Paul Scherrer Institute aims to produce large quantities of radioisotopes (in the range of GBq), mainly Terbium-149, for the promising Targeted Alpha-particle Therapy (TAT) against metastasized cancer. To facilitate this, a new electromagnetic separator is currently being designed. Comprising two spectrometer magnets, the design of the separator is crucial, with magnetic properties and fringe fields strongly influencing beam characteristics and purity of the collected radioisotopes. The first of these magnets is exposed to high radiation and has strong requirements on surrounding shielding materials. The required steel for effective fast-neutron shielding introduces distortions to the field in the spectrometers. In this paper, we explore techniques to mitigate the sensitivity of the magnet to nearby shielding materials. The investigation begins with simulating a dipole magnet, assessing produced fringe fields, and understanding the influence of surrounding steel walls. Various methods, including Rogowski-profile ends, mirror plates, field clamps, and end shunts, are investigated to correct the aberrations in the generated field. The evaluation of produced field maps is quantified using harmonics, and the potential for tuning fringe fields with a sequence of end shunts is explored. Ultimately, the paper identifies the most suitable method for implementation in the TATTOOS project.
Paper: THPR68
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR68
About: Received: 20 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
THPR86
The gamma activation measurements at Shanghai Laser Electron Gamma Source (SLEGS)
3714
SLEGS is a Laser Compton Scattering gamma source. The gamma energy is 0.66 to 21.7 MeV, and the gamma flux is approximately 4.8e+5 to 1.5e+7 phs/s. Gamma activation method is used in beam flux monitor, medical isotpoe production and nuclear astrophysics in SLEGS*. Gamma beam flux under different collimated apertures has been checked by gamma activation method by using various half-life nuclide targets with an online activation and offline measurement platform. It is consistent with the flux measured with direct method by the LaBr3 detector. The activation method will be uniquely advantageous for monitoring gamma beam with short-life nuclide in a short time.A series of potential medical isotopes giant resonance production cross sections are measured by gamma activation method, which will provide key data for medical isotopes production by photonuclear reactions. The p-nuclei’s photonuclear cross sections**, for example Ru, are measured by photoneutron and gamma activation, which can provide favorable data on the much larger abundance of 98Ru, 96Ru. The activation experiment of SLEGS provides a reliable option for different experimental research objectives in photonuclear physics.
Paper: THPR86
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR86
About: Received: 17 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPS25
Improving the uniformity of magnetron sputtering titanium film for nonlinear injection kicker
3791
The design and manufacturing of the Nonlinear Injection Kicker is one of the upgrade project for the Taiwan Photon Source (TPS). In accordance with the requirements of the developed ceramic vacuum chamber, it is necessary to apply a uniform titanium coating on the inner surface of the ceramic substrate to reduce the impedance and image current observed by the stored electron beam. Therefore, titanium films must be sputtered onto a 30 cm × 6 cm ceramic substrate, and these films must exhibit excellent uniformity. Based on our tests of sputtering titanium films on ceramic substrate, the uniformity of the titanium film can be controlled within 5%. The adhesion between the ceramic substrate and the titanium films meets the highest level of ASTM-D3359 5B standard, with an adhesive strength reaching 40 MPa. This paper describes the detailed manufacturing processes and testing results.
Paper: THPS25
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS25
About: Received: 05 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPS39
Channeling performance of bent crystals developed at CERN
3819
Bent crystals are a mature technology used in several applications at CERN, such as the crystal-assisted collimation system for LHC ion operation and reduction of losses during the slow extraction from the SPS by shadowing the electrostatic septum. In the future, it is planned to measure electric and magnetic dipole moments of short-lived particles with a double-crystal experiment in the LHC. To consolidate their strategic use, CERN has been equipped to produce in-house bent crystals. Each crystal is required to be fully validated before its installation by different techniques, such as metrology, X-ray diffractometry and characterization with beams. The latter can measure the bending angle, the torsion, and the channeling efficiency, which is related to crystal imperfections. In this contribution, we present the performance with beams of the first prototype bent crystals manufactured at CERN and tested during a measurement campaign in the North Area.
Paper: THPS39
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS39
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPS40
Thermal-fluid analysis and operation of a low power water-cooled tilted beam dump at Facility for Rare Isotope Beams
3823
The Facility for Rare Isotope Beams is a high power heavy ion accelerator completed in April 2022. The FRIB accelerator was commissioned with acceleration of heavy ions to energies above 200 MeV/nucleon (MeV/u) that collide onto a rotating single-disk graphite target. The remaining beam is absorbed by a water-cooled static beam dump that is oriented at a 6 degrees angle with respect to the beam. The beam dump consists of the beam stopper made of machined Aluminum 2219 block, and 3D-printed inlet and outlet parts made of Aluminum 6061 that delivers the cooling water from utilities to the beam stopper and its return. This low power beam dump is designed for up to 10 kW beam power. This paper presents a discussion on the thermal-fluid behavior of the beam dump for various beam species and beam power.
Paper: THPS40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS40
About: Received: 13 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPS41
Thermal analysis of rotating single slice graphite target system for FRIB
3827
The Facility for Rare Isotope Beams (FRIB) is a high power heavy ion accelerator facility at Michigan State University completed in 2022. Its driver linac is designed to accelerate all stable ions to energies above 200 MeV/u with beam power of up to 400 kW. Currently FRIB is operating at 10 kW delivering various primary beams. The target absorbs roughly 25% of the primary beam power and the rest is dissipated in the beam dump. This paper presents a brief overview of the current production target system and details the thermal analysis ANSYS simulations utilized for temperature and stress prediction. The existing single-slice rotating graphite target can accommodate up to 40 kW for lighter beams, with a planned transition to a multi-slice concept.
Paper: THPS41
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS41
About: Received: 09 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPS43
Comparative study of decay heat calculations with FLUKA and MCNP/CINDER2008
3833
In designing a high-power tungsten target, decay heat driven temperature rise in the spallation volume is a safety concern during maintenance and in loss of coolant accidents. As tungsten hydrates and becomes volatile in steam at above 800 ◦C, it is important to keep the target temperature below this threshold when active cooling is unavailable. Decay heat in a target is calculated with particle transport simulation codes combined with transmutation codes. The calculated decay heat usually differs depending on the nuclear cross sections and the decay particle transport models built in the code architecture. In this paper, we calculated decay heat of a water-cooled tungsten target using popular particle transport codes, FLUKA and MCNP6® paired with CINDER2008 and compared the results. The target-moderator-reflector (TMR) system is modeled with a water-cooled solid tungsten target, water premoderators, liquid hydrogen cold moderators and beryllium reflectors. Water-cooled stainless-steel shielding is modeled around the TMR system. The tungsten volume is clad with a thin layer of erosion/corrosion resistant material. This study provides information about the uncertainty range in decay heat prediction of high-power spallation targets for hazard analysis.
Paper: THPS43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS43
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
THPS44
Diffusion bonding of tungsten-vanadium-zirconium using vacuum hot pressing for the development of a low decay heat cladding solution for tungsten spallation targets
3837
Tantalum has been used as cladding material for water-cooled solid tungsten targets at many leading spallation neutron production facilities thanks to its high neutron yield, manageable radiation damage behavior, and excellent corrosion/erosion resistance in radiation environments. However, from a safety hazard perspective, thermal neutron capture of tantalum in spallation environments causes a high specific decay heat in the target volume, which often becomes a limiting factor in increasing the beam power on the target. In this paper, we studied vacuum hot pressing (VHP) parameters to diffusion bond zirconium to tungsten to explore the feasibility of using zirconium alloys as an alternative cladding material to tantalum. Zirconium alloys have long been used as cladding material for early generation solid spallation targets, and nuclear fuel rods. In spallation environments zirconium has significantly lower decay heat with shorter decay time compared to tantalum. The hot isostatic pressing (HIP) of zirconium and tungsten is known to produce limited bonding quality due to the formation of the brittle ZrW2 intermetallic layer. To overcome this problem, placing a vanadium interlayer between tungsten and zirconium has been proposed by exploring parameter space in binary alloy phase diagrams. Under the VHP conditions, 860 ◦C at 70 MPa for 4 hours, Zr-V and V-W showed good diffusion bonding, which demonstrates the feasibility of a single step HIP process to make the zirconium alloy clad tungsten spallation volumes.
Paper: THPS44
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS44
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPS45
Proton beam power limits for stationary water-cooled tungsten target with different cladding materials
3841
The proton beam power limit for a solid-tungsten spallation target is largely determined by beam induced thermomechanical structural loads and decay heat power deposition, while its lifetime is limited by radiation damage and fatigue life of the target materials. In this paper, we studied the power limits of a stationary water-cooled solid tungsten target concept. Tantalum clad tungsten was considered as a reference case. Being a low activation material, zircaloy 2 cladding option was studied and its decay heat driven power limit was compared with the reference case. Zirconium alloys have proven operations records in spallation target and nuclear fission environments, supported by materials data obtained from post irradiation examinations. Recent study also demonstrated feasibility of diffusion bonding zirconium to tungsten using vanadium foil inter layer. Particle transport simulations code FLUKA was used to calculate energy deposition and decay heat power deposition in the target, based on the beam parameters technically feasible at the Second Target Station of the Spallation Neutron Source at Oak Ridge National Laboratory. The energy deposition data were used for flow, thermal, and structural analyses to determine the beam intensity limit on the target concept studied. The decay heat deposition data were used to calculate the transient temperature evolution in the tungsten volumes in a loss of coolant accident (LOCA) scenario to determine its beam power limit. For a 1.3 GeV proton beam, the power limit on a stationary target was 400 kW for a tantalum clad target model and 800 kW for a zircaloy 2 clad target model.
Paper: THPS45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS45
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
THPS64
Statistical evaluation of mechanical properties of RRR300 niobium sheets
3897
Tokyo Denkai has been producing niobium for superconducting cavities since 1985. We have also produced niobium for L-band cavities since the beginning of their development, and have a large number of production records. In particular, more than 20,000 pieces have been delivered to TESLA based on the XFEL-007 specifications for the European XFEL, LCLS-II, LCLS-II HE, and SHINE projects. In this report, we present a statistical evaluation of measured data on the actual mechanical properties of niobium sheets in a mass production of niobium sheets based on nearly identical specifications. Specifically, histograms of hardness, RRR, and tensile testing (rolling and transverse direction) of niobium sheets were drawn to evaluate the data variability. The data for all items were normally distributed, indicating that quality was controlled. In addition, the relationship between rolling direction and all tensile test items (yield stress, maximum stress, and elongation) were examined. Positive correlations were observed for yield stress and maximum stress. I report on the quality data and statistical results of the same product over a period of more than 10 years.
Paper: THPS64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS64
About: Received: 14 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024