multipole
MOPC77
Eddy current shielding of the magnetic field ripple in the EIC electron storage ring vacuum chambers
246
The EIC electron storage ring has very tight tolerances for the amplitude of electron beam position and size oscillations at the interaction point. The oscillations at the proton betatron frequency and its harmonics are the most dangerous because they could lead to unacceptable proton emittance growth from the oscillating beam-beam kick from the electrons. To estimate the amplitude of these oscillations coming from the magnet power supply current ripple we need to accurately account for the eddy current shielding by the copper vacuum chamber with 4-mm thick wall. At the frequencies of interest, the skin depth is a small fraction of the wall thickness, so the commonly used single-pole expressions for eddy current shielding transfer function do not apply. In this paper we present new (to the best of our knowledge) analytical formulas that adequately describe the shielding for this frequency range and chamber geometry and discuss the implications for the power supply ripple specifications at high frequency.
Paper: MOPC77
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC77
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
MOPC82
Dynamic aperture of the EIC electron storage ring
266
Design of the electron-ion collider (EIC) at Brookhaven National Laboratory continues to be optimized. Particularly, the collider storage ring lattices have been updated. Dynamic aperture of the evolving lattices must be kept sufficiently large, as required. In this paper, we discuss the collider Electron Storage Ring, where the lattice updates include improvements of the interaction region layout and arc dipole configuration, reduced number of magnet types, and changes related to the use of existing magnets. Optimization of non-linear chromaticity correction for an updated 18 GeV lattice and the latest estimates of dynamic aperture with errors are presented.
Paper: MOPC82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC82
About: Received: 16 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
MOPR06
Fixed tunes fast cycling permanent magnet proton FFA synchrotron
467
We present a novel concept of the Fixed-Field-Alternating (FFA) permanent magnet small racetrack proton accelerator with kinetic energy range between 10-250 MeV. The horizontal and vertical tunes are fixed within the energy range providing very fast cycling with a frequency of 400 Hz to 1.3 KHz. The injector is commercially available cyclotron with RF frequency of 65 MHz. The permanent magnet synchrotron has a shape of a racetrack where the two arcs are made of combined function permanent non-linear fields magnets to provide fixed betatron tunes for the extraordinary kinetic energy range between 10 and 250 MeV.
Paper: MOPR06
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR06
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
MOPS13
Understanding sextupole
725
In this study, we reassess the dynamics within a simple accelerator lattice featuring a single degree of freedom and incorporating a sextupole magnet. In the initial segment, we revisit the H\'enon quadratic map, a representation of a general transformation with quadratic nonlinearity. In the subsequent section, we unveil that a conventional sextupole is essentially a composite structure, comprising an integrable McMillan sextupole and octupole, along with non-integrable corrections of higher orders. This fresh perspective sheds light on the fundamental nature of the sextupole magnet, providing a more nuanced understanding of its far-from-trivial chaotic dynamics. Importantly, it enables the description of driving terms of the second and third orders and introduces associated nonlinear Courant-Snyder invariant.
Paper: MOPS13
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS13
About: Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
MOPS15
Symplectic modeling of ALS-U bending dipoles using 3D magnetic field data
733
The Advanced Light Source Upgrade (ALS-U) is a 2 GeV high-brightness, nine-bend achromat storage ring, designed to reduce the natural emittance relative to the existing ALS by a factor of 20 for improved x-ray coherent flux and brightness. The upgrade includes the installation of an accumulator ring of the same energy as, and slightly smaller circumference than, the storage ring. The bending dipoles provide special challenges for accurate symplectic modeling, such as the combination of large sagitta and magnet narrow vertical aperture (in the accumulator ring) and overlapping fringe fields (in the main ring). We describe a procedure for the calculation of symplectic maps for the ALS-U dipoles using robust surface-fitting methods based on 3D finite-element field data, including a discussion of vector potential gauge choice and model-dependent effects on the lattice chromaticity.
Paper: MOPS15
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPS15
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
TUPG47
TDR baseline lattice for SOLEIL II upgrade project
1346
Previous TDR (Technical Design Report) studies for the SOLEIL upgrade project (SOLEIL II) have converged towards a lattice alternating 7BA and 4BA HOA (High Order Achromat) type cells providing an ultra low natural horizontal emittance value in the 85 pm·rad range at an energy of 2.75 GeV. The new TDR lattice is an evolution that keep the insertion devices photon source points at their present location, allows a better relative magnet positioning and more space for accommodating photon absorbers, BPMs (Beam Position Monitor) and other mandatory diagnostics. This last evolution includes a better modeling of all the bend magnets based on their realistic field profiles and the accommodation of height super-bends for beam-lines as well as for beam size diagnostics. In addition an exhaustive investigation of the systematic and especially the cross-talk multipoles as well as the phase 1 portfolio of insertion devices impacts has been carried out. This paper reports the linear and the non-linear beam dynamic optimizations as well as future directions for performance improvement.
Paper: TUPG47
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPG47
About: Received: 16 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPR48
Sextupole misalignment and defect identification and remediation in IOTA
1527
The nonlinear integrable optics studies at the integrable optics test accelerator (IOTA) demand fine control of the chromaticity using sextupole magnets. During the last experimental run undesirable misalignments and multipole composition in some sextupole magnets impacted operations. This report outlines the beam-based methods used to identify the nature of the misalignments and defects, and the subsequent magnetic measurements and remediation of the magnets for future runs.
Paper: TUPR48
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR48
About: Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
TUPR49
Self-correction coil for RCS dipole in Electron Ion Collider
1531
The Rapid Cyclotron Synchrotron (RCS) is an acceleration ring designed for boosting the electron energy from 400 MeV after the LINAC to 1 GeV prepared for injection into the Electron Storage Ring (ESR). Operating in a pulsed mode at 1 Hz, the RCS accelerates four consecutive bunches with dipole magnet ramping rapidly at each injection. Rapid ramping of the magnetic field induces eddy currents, causing delays and high harmonic effects which are detrimental to low-energy electron bunches. To mitigate this, cost-effective multi-turn coils with specific patterns are proposed. These coils, powered by eddy currents from main dipole field ramping, generate counter fields to cancel selected high harmonic components. This paper explores the coil pattern selection process.
Paper: TUPR49
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR49
About: Received: 15 May 2024 — Revised: 24 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
TUPS09
Magnetic field modelling and symplectic integration of magnetic fields on curved reference frames for improved synchrotron design: first steps
1649
Compact synchrotrons, such as those proposed for cancer therapy, use short and highly bent dipoles. Large curvature drives non-linear effects in both body and fringe fields, which may be critical to control to obtain the desired dynamic aperture. Similarly to current practice, for straight magnet, our long-term goal is to aim at finding a parametrization of the field map that requires few terms to capture the relevant long term dynamical effects. This parametrization will then be used to optimize the performance of the synchrotron by long-term tracking simulations and, at the same time, drive the development of the magnet design by providing measurable quantities that can be computed from field maps. This paper presents the first steps towards the goal of representing the field with a few key parameters.
Paper: TUPS09
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS09
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPC20
Experimentally verified reduction of local reflection of traveling-wave accelerating structure by output coupler undercoupling
2003
Hefei Advanced Light Facility (HALF) injector comprises 40 S-band 3-meter traveling wave accelerating structures, capable of delivering electrons of full energy 2.2 GeV into the storage ring. To mitigate the emission degradation caused by dipole and quadrupole fields in the coupler cavity, the coupler design incorporates a racetrack and a short-circuit waveguide to eliminate this impact. This article presents an introduction to design of the traveling wave structure and the results of cold and high-power testing. We performed tuning and preliminary measurements on accelerating structure, resulting in meeting the single-cell phase deviation and accumulated phase deviation requirements of the project objectives while maintaining good measurement consistency.
Paper: WEPC20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC20
About: Received: 05 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
WEPS64
Measurement of integrated gradient and field quality on the first Q2 magnets for HL-LHC
2847
The Q2 insertion quadrupoles for the High Luminosity upgrade of the LHC are currently being produced and tested. The test of the first units provides valuable information about the field quality of superconducting accelerator magnets built from Nb3Sn coils. This paper presents the results of the magnetic measurements performed on the prototype and series magnets with emphasis on field quality and field repeatability. The stability of the integral gradient is analyzed in view of the final installation in the machine.
Paper: WEPS64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS64
About: Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
WEPS65
The first superconducting final focus quadrupole prototype of the FCC-ee study
2851
A first FCC final focus quadrupole prototype has been designed, constructed and tested. The prototype is of a Canted Cosine Theta type using a NbTi conductor with novel features like edge compensation and wax impregnated. It has an aperture of 40 mm and a field gradient of 100 T/m. In this paper we recall the main design features and report on the test results on field quality and the powering campaign.
Paper: WEPS65
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS65
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
WEPS75
A design for very short powered quadrupoles
2875
Powered optics magnets which could be stacked in a very dense alternating pattern could enable a higher density of focusing in beamlines, with potential use for e.g. muon beams or high-current hadron beams at low energy. Here, we investigate such a design of quadrupole, where the yoke is energised by straight conductors running parallel to the beam, and does not require conductor to pass within the gap between yokes of adjacent magnets of opposite polarity. Suitable shaping and design of the steel yokes allows alternating focusing and defocusing quadrupoles, of arbitrary thickness, to be positioned with only the spacing required for constraining fringe fields. We investigate multiple thicknesses/sizes, and the use of thin field clamps to further reduce the required spacing between quadrupoles.
Paper: WEPS75
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS75
About: Received: 13 May 2024 — Revised: 22 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
WEPS76
Upgrading of the INFN-LNF magnetic measurements laboratory
2879
The magnetic measurements laboratory of the Frascati National Laboratories of INFN is one of the pole of the Innovative Research Infrastructure for applied Superconductivity (IRIS). This infrastructure aims at upgrading laboratories to carry out basic research on magnetism and superconducting materials, test of superconducting magnets, wires, tapes, cables. The LNF pole will be devoted to testing SC coils and magnets at room temperature. These measurements are recommended during the manufacturing phase, since they allow the validation of the assembly and the detection of defects at early stages of production, before the cryogenic tests are carried out. Part of the equipment is already available, including a stretched wire bench, a rotating coil system, a NMR probe, gaussmeters, instruments for high precision electrical measurements. The IRIS upgrade will include a 3D Hall probe mole system, a pulsed wire bench, a 5-axes coordinatometer, high-stability power supplies of various sizes, a calibration system. The flexibility of the instruments will allow to cover a large range of magnetic measurements, from point maps to integrated fields, from multipolar analysis to fiducialization.
Paper: WEPS76
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPS76
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPR76
A new approach to solving the problem of an extended helical undulator
3690
An exact solution for the radiation field of a particle in a helical undulator, valid for an arbitrary point in space and an arbitrary particle energy, was obtained by the partial domain method, generalized for the case of spiral motion of a particle. The interface between the regions is a cylindrical surface containing the spiral trajectory of the particle. A comparison is made with the existing solution, which is valid in the far zone at high particle energies.
Paper: THPR76
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPR76
About: Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
THPS54
Magnetic measurements for Halbach-type permanent quadrupoles using a single-stretched wire system
3864
In the framework of the acceleration techniques, the Plasma Wake Field Acceleration (PWFA) is one of the most promising in terms of high machine compactness. For this purpose, a crucial role is played by the particle beam focusing upward and downward the plasma-beam interaction, performed by high gradient Permanent Magnet Quadrupoles (PMQs). In the framework of the INFN-LNF SPARC_LAB (Sources for Plasma Accelerators and Radiation Compton with Laser And Beam) six Halbach-type PMQs have been tested before installing them into the machine. This paper presents the outcomes of magnetic measurements conducted using a Single-Stretched Wire (SSW) system. The results include comprehensive details on integrated gradients, magnetic multipole components, and roll angles of the magnets. By considering the operational parameters of the machine, the results show that the tested magnets can be feasibly installed only within limited triplets configurations.
Paper: THPS54
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS54
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024