LLRF
MOCN2
Direct RF sampling based LLRF control system for C-band linear accelerator
25
Low Level RF (LLRF) control systems of linear accelerators (LINACs) are typically implemented with heterodyne based architectures, which have complex analog RF mixers for up and down conversion. The Gen 3 RF System-on-Chip (RFSoC) device from AMD Xilinx integrates data converters with maximum RF frequency of 6 GHz. That enables direct RF sampling of C-band LLRF signal typically operated at 5.712 GHz without RF mixers, which can significantly simplify the system architecture. The data converters sample RF signals in higher order Nyquist zones and then up or down converted digitally by the integrated data path. The closed-loop feedback control firmware implemented in FPGA integrated in RFSoC can process the baseband signal from the ADC data path and calculate the updated phase and amplitude to be up-mixed by the DAC data path. We have developed an LLRF control RFSoC platform, which targets Cool Copper Collider (C3) and other C or S band LINAC research and development projects. In this paper, the architecture of the platform and the test results for some of the key performance parameters, such as phase and amplitude stability with our custom solid-state amplifier, will be described.
  • C. Liu, B. Hong, L. Ruckman, R. Herbst, E. Nanni
    SLAC National Accelerator Laboratory
Slides: MOCN2
Paper: MOCN2
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOCN2
About:  Received: 13 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR01
RF power station stabilization techniques and measurements at LNF-INFN
1417
In the framework of EuPRAXIA@SPARC_LAB project, we are studying possible solutions to upgrade and measure the amplitude and phase stability of the RF accelerating fields generated by a klystron. These studies concern the C- and X- band klystrons installed in the LNF infrastructures. In particular, we will present our work on a fast phase feedback around the C-band power station (50 MW klystron and solid state modulator) installed at SPARC_LAB. We are trying to push the timing jitter below the standard limit of such systems (few tens of fs RMS). A second topic is the study of the jitter of the X-band power station (50 MW klystron and solid state modulator) installed in the TEX facility. Precise measurements on amplitude and phase of this system will be reported at different positions both upstream (LLRF and pre-amp) and downstream (waveguides and prototype structure) the klystron.
  • L. Piersanti, A. Gallo, B. Serenellini, F. Cardelli, G. Scarselletta, G. Latini, M. Bellaveglia, M. Scampati, R. Magnanimi, S. Quaglia, S. Pioli
    Istituto Nazionale di Fisica Nucleare
Paper: TUPR01
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR01
About:  Received: 09 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR02
Advancements in X-band technology at the TEX facility at INFN-LNF
1421
In anticipation of the Eupraxia@SPARC_LAB project at the INFN Frascati National Laboratories, an intensive testing and validation activity for the X-band RF system has commenced at the TEX test facility. The Eupraxia@SPARC_LAB project entails the development of a Free-Electron Laser (FEL) radiation source with a 1 GeV Linac based on plasma acceleration and an X-band radiofrequency (RF) booster. The booster is composed of 16 high-gradient accelerating structures working at 11.994GHz. All radiofrequency components comprising the basic module of the booster, from the power source to the structure, must undergo testing at nominal parameters and power levels to verify their reliability. For this reason, since 2021, several experimental runs have been conducted to test various components in X-band technology at the TEX facility. This paper presents the results obtained thus far from the different experimental runs, and it also outlines the future upgrade of the facility, which will enhance testing capabilities and the future prospects of the facility itself.
  • F. Cardelli, A. Gallo, A. Liedl, A. Falone, B. Serenellini, B. Buonomo, C. Marta, C. Taruggi, C. Di Giulio, D. Alesini, E. Di Pasquale, G. Catuscelli, G. Luminati, G. Latini, L. Piersanti, L. Spallino, M. Bellaveglia, S. Cantarella, S. Bini, S. Pioli
    Istituto Nazionale di Fisica Nucleare
Paper: TUPR02
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR02
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPR83
PSI's open-source FPGA DSP libraries
1607
Paul Scherrer Institute (PSI) has led significant advancements in accelerator electronics development, leveraging Field Programmable Gate Arrays (FPGA) based Digital Signal Processing (DSP) across various critical systems, including Low Level RF (LLRF), Longitudinal Beam Loss Monitoring (LBLM), charge particle measurement via Integrating Current Transformers (ICT), Timing, Filling Pattern Monitor (FPM), Beam Position Monitor (BPM) and other essential beam instruments. Over the past decade, PSI’s approach to develop in-house control system platform (e.g. CPCI-S.0), has encouraged innovation. The strategic reorganization within PSI, fostering collaboration among FPGA firmware engineers, led to the inception of Open-Source FPGA DSP libraries hosted on GitHub. Serving as a comprehensive repository, these libraries empower developers by providing common FPGA IPs, fundamental DSP algorithms and Fixed-Point (FP) arithmetic units. Their presence advances prototype development by enabling rapid assembly of several measurement and or control concepts. In this contribution, we present the features and the transformative impact of the PSI Open-source FPGA libraries with a focus on LLRF. This initiative has not only empowered our team to provide valuable insights, but has also streamlined the integration of new recruits and students, enabling the seamless continuation of FPGA design frameworks.
  • B. Stef, J. Purtschert
    Paul Scherrer Institut
  • O. Bruendler
    Enclustra GmbH
  • R. Rybaniec
    Paul Scherrer Institute
Paper: TUPR83
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR83
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPS17
Longitudinal phase space measurements at MedAustron
1673
MedAustron is an ion therapy facility located in Wiener Neustadt, Austria, which uses third order resonant slow extraction to deliver protons and carbon ions for clinical irradiation. The foreseen upgrade of the new low level RF (LLRF) system facilitates advanced longitudinal beam manipulation schemes involving multiple RF harmonics, which will be exploited to improve the slow extraction process and the consequent spill characteristics. To support these studies and provide a new diagnostic tool longitudinal tomography is being implemented. This proceeding presents the employed measurement set-ups and compares the first obtained tomographic reconstructions with BLonD simulations.
  • K. Holzfeind, F. Kuehteubl, L. Fischl, G. Guidoboni, C. Kurfuerst, C. Maderböck, F. Plassard, D. Prokopovich, C. Schmitzer, M. Wolf
    EBG MedAustron GmbH
  • E. Renner
    TU Wien
  • A. Wastl
    MedAustron International GmbH
Paper: TUPS17
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS17
About:  Received: 14 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPG02
Analog APS linac phase detector and digital phase detector test comparison
2173
Maintaining beam-accelerating structure RF phasing of a linac is crucial for maintaining optimal beam transport performance. At the Advanced Photon Soure (APS), in 2008 we implemented an analog phase detector system using the Analog Devices AD8302 phase detector chip. The APS phase detectors use as an S-Band RF phase reference an out-coupled signal from the waveguide supplying the accelerating structures with RF and an S-Band filtered RF signal from a bpm for the beam-RF system phase measurement. The phase detectors are used throughout the length of the linac in a control law to automatically maintain the beam on-crest phase condition during operations. We have obtained from Instrumentation Technologies two phase detection systems we evaluated as a possible upgrade path for the legacy APS phase detector system. The systems are the Libera LLRF and Libera cavity BPM products available from Instrumentation Technologies. We compare the performance of each system to induced phase changes using the APS Linac RF thermionic gun electron source.
  • A. Brill, N. Sereno, P. Kallakuri, Y. Yang
    Argonne National Laboratory
  • B. Baricevic, M. Cargnelutti, P. Leban
    Instrumentation Technologies
Paper: WEPG02
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPG02
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG20
ALS-U AR RF equipment protection system
3295
This paper presents the design and status of Accumulator Ring (AR) RF Equipment Protection System (EPS) of Advanced Light Source Upgrade project at LBNL. The key components of AR RF EPS include a Master Interlock PLC subsystem handling supervisory control and slow interlocks in ms scale, an FPGA-based LLRF Controller managing fast interlocks in µs scale, a 60 kW high-power amplifier with standalone PLC-based slow (ms scale) and FPGA-based fast (µs scale) protection systems, and an RF Drive Control Chassis acting as primary RF mitigation device. The design of AR RF EPS is presented along with internal RF and external AR subsystems interfaces.
  • N. Us Saqib, K. Baptiste, D. Nett, K. Bender, S. Murthy, Q. Du, C. Toy, J. Lee, S. Basak
    Lawrence Berkeley National Laboratory
  • W. Lewis
    Osprey DCS LLC
Paper: THPG20
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG20
About:  Received: 13 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG24
Real-time data acquisition with CompactPCI serial platform at PSI
3308
Data acquisition (DAQ) is an ubiquitous feature in modern particle accelerator measurement and control systems. At the Paul Scherrer Institut (PSI), a next generation of electronic devices is being designed to meet the demands of upcoming renewal of facilities. The new developments utilize the CompactPCI Serial (CPCI-S.0) platform, and will cover a diverse set of applications, including Low Level Radio Frequency (LLRF), Longitudinal Beam Loss Monitoring (LBLM), and Filling Pattern Monitoring (FPM) systems. Careful design considerations and selection of an optimal architecture are crucial to fulfill a variety of DAQ requirements such as maximum frequency of acquisition, size of the data and different modes of triggering. In this contribution, we focus on the real-time DAQ implementations utilizing a multiprocessor system on chip (MPSoC) technology. We review the IP components developed in-house at PSI that provide the DAQ functionality. We demonstrate, that by reusing the IP components development, prototyping and testing of applications requiring the DAQ are accelerated.
  • R. Rybaniec
    Paul Scherrer Institute
  • O. Bruendler
    Enclustra GmbH
  • B. Stef
    Paul Scherrer Institut
Paper: THPG24
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG24
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG32
BPM feedback for LLRF energy and phase regulation in charge stripping beamlines
3326
Charge stripping is inherent for high power ion accelerators such as the FRIB LINAC. However, at high power, strippers require motion to prolong the operational life of the stripping media, or by flowing a liquid Lithium film. The charge stripping process introduces energy losses that vary with the actual Lithium film thickness, which can result in observable beam losses along the tuned beamline at high on-target beam power, above ~100 kW, if not adequately mitigated. BPM phase feedback is used in real-time to compensate for these effects, controlling upstream RF cavities in order to maintain a constant beam energy and phase post-stripper, which significantly reduces beam energy fluctuations.
  • S. Zhao
    Facility for Rare Isotope Beams
  • A. Plastun, D. McNanney, P. Ostroumov, S. Cogan, T. Kanemura, T. Maruta
    Facility for Rare Isotope Beams, Michigan State University
  • Q. Zhao
    Michigan State University
Paper: THPG32
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG32
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG47
Upgrade of LLRF control system for infrared free-electron laser
3372
Hefei Infrared Free-Electron Laser device (IR-FEL) is a user experimental device dedicated to energy chemistry research that can generate high brightness mid/far infrared lasers. It is driven by an S-band linear accelerator with a maximum electron energy of 60 MeV. The stability of the final output laser is determined by the energy stability and spread of the electron beam, and the Low-Level RF control system (LLRF) is opitimized to improve the energy stability of the electron beam. There are two klystrons in the linear accelerator of IR-FEL, and the periodic oscillation of out power output of the klytrons is existed (approximately ± 0.2%~2% for amplitude). The oscillation period of two klystrons are exchanged in the case of exchanging the filament power supplies of two klystrons. The pulse-to-pulse feedforward and in-pulse feedback algorithm are developed to compensate the periodic fluctuations of the output power of the klystrons, and the IQ demodulation is changed to the Non-IQ demodulation (13/3) to separate and suppress the odd harmonic. After the optimization, the stability of klystron output signal has been improved from 0.12%/0.07° (rms) to 0.04%/0.09° (rms).
  • K. Wu, B. Du, F. Shang, H. Zhang, J. Pang, S. Zhang, S. Ma, S. Dong, Z. Li
    University of Science and Technology of China
Paper: THPG47
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG47
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG48
Development of RF reference distribution system for Hefei Advanced Light Facility
3375
The Hefei Advanced Light Facility (HALF) is a diffraction-limited storage ring-based light source consists of a 180 m linear accelerator and a 480 m storage ring. The RF reference signal included 499.8 MHz and 2856 MHz are generated from two phase-locked master oscillators and transmitted to the RF system, beam position monitor system, timing system and beamline station by the phase stabled coaxial cables which are installed in the ±0.1℃ thermostatic bath. The RF Reference Distribution System (RF-RDS) are developed to realize the phase synchronization and transmission with low phase noise for long distance. The continues wave amplifier is manufactured to generate RF power of 10 W, with the added phase noise being less than 1 fs (10 Hz~10 MHz). The phase noise of each receiving terminal is estimated to be less than 30 fs (10 Hz~10 MHz). The design of RF-RDS and experimental result are discussed in this paper.
  • K. Wu, B. Du, S. Ma, S. Zhang, J. Pang, S. Dong
    University of Science and Technology of China
Paper: THPG48
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG48
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG69
Improvements of longitudinal stability with LLRF optimization at SIRIUS
3435
SIRIUS is a 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS). Recently, investigations of noise sources and the storage ring RF plant identification enabled a fine-tuning of the Digital Low-Level Radio Frequency (DLLRF) parameters. This paper presents the main improvements implemented, which include the mitigation of 60Hz noise from the LLRF Front End and the optimization of the control system parameters. Optimizations in the machine were based on an adjusted model of the SIRIUS storage ring RF plant. Tests with the model's parameters showed that the system's stability was strongly dependent on phase shifts introduced by nonlinearities from the high power RF sources. The new parameters significantly improved the control performance, increasing the bandwidth of the system and reducing longitudinal oscillations. BPM (Beam Position Monitor) and BbB (Bunch-by-Bunch) systems were employed to quantify longitudinal beam stability improvements.
  • D. Daminelli, A. Lima, F. Hoshino, M. Alves
    Brazilian Synchrotron Light Laboratory
  • M. Souza
    Estadual de Campinas University
  • V. Freire
    Centro Nacional de Pesquisa em Energia e Materiais
Paper: THPG69
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG69
About:  Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG70
Canadian Light Source developments of the ALBA/CLS DLLRF system
3439
Located in Saskatoon, Saskatchewan, Canada, the Canadian Light Source (CLS) has been operation since 2003. CLS is a 3rd generation Synchrotron Light Source operating at 2.9GeV. The CLS Booster RF system uses a 100 kW, 500 MHz solid-state power amplifier to power two 5-cell “PETRA” cavities. Recently ALBA and CLS collaborated to commission a CLS-constructed version of the ALBA Digital Low-Level RF system in the CLS Booster ring RF system to replace the aging analog low-level RF system. Changes were required to address differing configuration and requirements between the CLS and ALBA RF systems. Challenges and opportunities for system machine safety, reliability, and performance improvements identified during and after commissioning have been addressed. Hardware configuration changes were implemented. Additional hardware devices have been produced and incorporated to streamline interfacing and to mitigate some risks.
  • D. Beauregard, J. Stampe
    Canadian Light Source Inc.
Paper: THPG70
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG70
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPG71
Commissioning of the digital LLRF system at the KEK Photon Factory 2.5 GeV ring
3442
In 2023, the KEK-PF 2.5 GeV ring LLRF system was replaced from a conventional analog to an FPGA-based digital system. The hardware and software of our digital LLRF system were developed by customizing the LLRF technologies established at the SPring-8 and J-PARC. In our system, we adopted the non-IQ direct sampling method for RF detection. We set the sampling frequency at 8/13 (307.75 MHz) of the RF frequency, where the denominator (13) is the divisor of the harmonic number (312) of the storage ring. This allows us to detect the transient variation of the cavity voltage that is synchronized with the beam revolution. To compensate this voltage variation, we plan to implement a feedforward technique. These functions will be useful to improve the bunch lengthening performance in a double RF system for KEK future synchrotron light source. The new digital LLRF system has been already installed and used for the user operation. At the nominal beam current of 450 mA, the variation of the cavity voltage amplitude and phase were within ±0.06% and ±0.06°, respectively. In this presentation, we introduce the details of our new system and report on the commissioning results.
  • D. Naito, A. Motomura, N. Yamamoto, S. Sakanaka, T. Takahashi
    High Energy Accelerator Research Organization
Paper: THPG71
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG71
About:  Received: 10 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS01
STAR High-Energy Linac status: complete installation acceptance tests
3718
The installation of the STAR High-Energy Linac, the energy upgrade of the Southern European Thomson Back-Scattering Source for Applied Research (STAR) project at the University of Calabria, was conducted by INFN by the end of 2023. This paper presents the testing procedures aimed at confirming the consistency, completeness, and quality of the STAR accelerator upgrade installation (electron beam energy boost from 65 MeV up to 150 MeV). We illustrate the installation and testing of the electrical, hydraulic and related automation and auxiliary systems. We will discuss the high-power commissioning of the two C-band RF power stations and testing of the low-level C-band RF system and control system configuration based on EPICS. Finally, we will describe the layout and testing of the vacuum system, the characterization and commissioning of the magnets with related power supplies and the assessment of the installed diagnostics devices. The linac commissioning as well as electron beam measurements are planned for Summer 2024, due to pending radioprotection authorizations.
  • L. Faillace, A. Esposito, A. Bacci, A. Gallo, A. Vannozzi, A. Ghigo, A. Stella, B. Serenellini, D. Giannotti, D. Alesini, F. Cardelli, F. Chiarelli, F. Broggi, G. Catuscelli, G. Luminati, G. Scarselletta, I. Drebot, J. Beltrano, L. Piersanti, L. Serafini, L. Pellegrino, M. Rossetti Conti, M. Bellaveglia, R. Magnanimi, S. Samsam, S. Vescovi, S. Bini, S. Tocci
    Istituto Nazionale di Fisica Nucleare
  • A. Bravin
    European Synchrotron Radiation Facility
  • A. Puppin, F. Prelz
    Universita' degli Studi di Milano & INFN
  • E. Tassi, R. Agostino, R. Barberi, V. Formoso
    Università della Calabria
  • E. Puppin
    Politecnico/Milano
  • G. D'Auria
    Elettra-Sincrotrone Trieste S.C.p.A.
  • V. Petrillo
    Universita' degli Studi di Milano
Paper: THPS01
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS01
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS02
Upgrade of the SPARC_LAB low level radiofrequency system
3722
SPARC_LAB facility was born in 2004 as an R&D activity to develop a high brightness electron photo-injector dedicated to FEL experiments and exploration of advanced acceleration techniques. The electron source consists in a brazefree 1.6-cell S-band RF gun with a peak electric field of 120 MV/m and a metallic copper photocathode. The gun injects particles into two S-band sections, the initial section acting as an RF compressor using the velocity bunching technique, with built-in solenoid coils that enhance magnetic focusing and control emittance. A subsequent C-band acceleration section acts as a booster to achieve the desired kinetic energy. The Lazio Regional government recently funded the SABINA project for the consolidation of SPARC_LAB facility. The reference and the distribution systems and the Low Level radiofrequency (LLRF) system will also undergo a significant upgrade, involving the replacement of the original analogue S-band and digital C-band radiofrequency systems with commercial, temperature-stabilized, FPGA-controlled LLRF digital systems provided by Instrumentation Technologies in order to improve performance in terms of amplitude, phase resolution, and stability.
  • L. Piersanti, M. Bellaveglia, A. Gallo, R. Magnanimi, S. Quaglia, M. Scampati, G. Scarselletta, B. Serenellini
    Istituto Nazionale di Fisica Nucleare
Paper: THPS02
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS02
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote