EPICS
TUPS10
Concluding the operation and development of COSY
1653
The operation of the COler SYnchrotron COSY and its further development ended in October 2023. We briefly review the operation of the accelerator facility and continuous development of its sub-systems. Additionally, this work is put in context of the transformation process that COSY operation and the Institute of Nuclear Physics (IKP) of the Research Center Jülich went through starting 2015. Furthermore, the decommissioning strategy along with the possible further use of COSY components are discussed.
Paper: TUPS10
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS10
About: Received: 20 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
TUPS71
A data science and machine learning platform supporting large particle accelerator control and diagnostics applications
1843
Osprey DCS is developing the Machine Learning Data Platform (MLDP) supporting data science applications specific to large particle accelerator facilities and other large experimental physics facilities. It represents a “data-science ready” host platform providing integrated support for advanced data science applications used for diagnosis, modeling, control, and optimization of these facilities. There are three primary functions of the platform: 1) high-speed data acquisition, 2) archiving and management of time-correlated, heterogeneous data, and 3) comprehensive access and interaction with archived data. The objective is to provide full-stack support, from low-level hardware acquisition to broad data accessibility within a portable, standardized platform offering a data-centric interface for accelerator physicists and data scientists. Osprey DCS has developed a working prototype MLDP* and is now pursuing full-scale development. We present an overview of the MLDP including use cases, architecture, and deployment, along with the current development status. The MLDP is deployable at any facility, however, the low-level acquisition component is EPICS based.
Paper: TUPS71
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS71
About: Received: 01 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
WEPC57
Design and implementation of an instrumentation & control system for cathodes and radio-frequency interactions in extremes (CARIE) project
2093
The Accelerator Operations and Technology division at Los Alamos Neutron Science Center (LANSCE) is working on designing and implementing an Instrumentation and Controls System (ICS) for the Cathodes and Radio-frequency Interactions in Extremes (CARIE) project. The system will utilize open-source Experimental Physics and Industrial Control System (EPICS) developed for scientific facilities for control, monitoring, and data acquisition. The hardware form factors will include National Instrument’s (NI) cRIO automation controller for industrial-like slow inputs/outputs and NI’s PXIe for high-speed data acquisition for diagnostic signals featuring masked and event-based time window capture. In this paper, we will discuss the reasons that led to the design, the hardware and software design specifics, the challenges that we faced during implementation, including the EPICS device support for NI PXIe, as well as the advantages and drawbacks of our system given the experimental nature of the CARIE project.
Paper: WEPC57
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC57
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
WEPR60
Algorithmic access to beam control and beam diagnostics at COSY Jülich
2638
During the last years of operation of the COSY facility, significant improvements were made in beam control and diagnostics. Many systems have been upgraded from a Tcl/Tk based control system to EPICS. One of the advantages of EPICS is the coherent communication via Process Variables (PVs). This allowed us not only to control the synchrotron and its injection beam line (IBL) through GUIs but also allowed us to control the beam with algorithms. In our case, these algorithms covered a range of applications from variation of the currents of the electromagnets up to more advanced techniques of AI/ML such as Bayesian Optimization or beam control with Reinforcement Learning. Due to the unified nature of the PVs, the algorithms can be fed with a plethora of input parameters such as beam positions, beam current, or even live images of a camera. Depending on the algorithm, it is also possible to switch the target quantity (e.g. from measured current at the beam cups to the intensity of the injected beam at COSY). The algorithms can also trigger model calculations and access their results, if desired. We present an overview of different applications and our efforts to prepare COSY for them.
Paper: WEPR60
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR60
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPG17
Prototype control system for the Low Energy Branch ion beamline
3285
At the tandem ion accelerator laboratory of the Jožef Stefan Institute (JSI) in Ljubljana, Slovenia we are developing a control system for the Low Energy Branch (LEB) ion beamline. This activity is ongoing simultaneously with the hardware construction of the ion beamline branch dedicated to the research with low-energy ion beams with energies up to 30 keV. The LEB instrumentation is categorized into: a) Ion sources, b) Ion beam transport optics, and c) Accessories, including specialized detector systems and devices, used to prepare and maintain optimal experimental conditions. Therefore, key functionalities of the control system include the control of devices like vacuum pumps, power supplies, etc., data acquisition from sensors and detector systems, and ensuring reliable autonomous operation for high-precision physics experiments [1]. The control system will be implemented within the Experimental Physics and Industrial Control System (EPICS) environment [2], providing us with the tools required to develop a comprehensive and scalable control system. In this work, we present a block scheme, a device list, the prototype control system architecture of a minimal control system prototype currently operational in our laboratory.
Paper: THPG17
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG17
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPG19
ALS-U accelerator motion design and realization
3292
Transitioning from the aging ALS Geo MACRO motor controller, this paper details the meticulous selection process for a new, cost-effective standard to fulfill the diverse motion requirements of the upcoming ALS-U project. Targeting primarily simple stepper motors with varying current demands, the chosen solution seamlessly integrates into the existing ALS-U EPICS environment while preserving the established ALS motion architecture and EPICS IOC support. Notably, the solution maintains independence from Delta-Tau technology while comprehensively accommodating the project's required range of servo/stepper motor types and offering dedicated support for critical subsystems like Beam Scraper and Cold Finger motion. This document delves into the exhaustive selection process, from comprehensively summarizing the current architecture and ALS-U requirements to meticulously analyzing the results of a year-long evaluation of diverse vendor offerings.
Paper: THPG19
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG19
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPG21
Accelerator control system software at LANSCE: vision and strategy for improvement and modernization
3298
The LANSCE accelerator is an 800 MeV linear accelerator delivering beams for more than fifty years. As it has aged, maintenance and upgrades to its control system software components have become challenging and often deferred due to operational and schedule constraints. As a result, we have a wide variety of new and old software, difficult to re-use, with a large staff burden. Data is stored in redundant sources, inconsistent formats, and outdated technology. Multiple tools exist for the same tasks. Some production software is updated without proper processes. We describe our approach to modernizing LANSCE control system software with proper development processes. We consider reduction of diversity, redundancies, data sources. Migration to modern technologies is also discussed. We explore the possibility of language standardization, and describe our database implementation and other future plans. Lifecycle management is also considered. This years-long effort will utilize a risk-based strategy to address the most urgent issues while also ensuring steady progress, ultimately resulting in a coherent and maintainable suite of control system software.
Paper: THPG21
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG21
About: Received: 14 May 2024 — Revised: 20 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPG22
Implementation of EPU56 control system at the Taiwan Photon Source
3301
The elliptically polarized undulator with a period length of 56 mm, called EPU56, is part of the Taiwan Photon Source (TPS) phase-III beamline project. Its control system is built within the EPICS framework using motion controllers and EtherCAT. The control systems of EPU56 include a safety interlock system, which automatically stops movement based on limit switches, torque limit switches,emergency stop button, and readings from the enclosed linear optical encoder. In addition, the control system offers settings for adjusting the correction magnets' power supply and employs optical absolute encoder motors to control the movement of the Gap and Phase. In order to maintain stability during movement, PID control is applied to the motion process by the motion controller. To further enhance precision, the system also employs an integrator limit within the motion controller for additional adjustments. This paper describes the development of the control system and the enhancements made to the insertion device movement process.
Paper: THPG22
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG22
About: Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
THPG23
Novel clock and trigger solutions with ultra-high precision delay to support time-resolved experiments at TPS
3305
The TPS (Taiwan Photon Source) is a third generation 3 GeV synchrotron light source. Some beamlines use synchrotron pulses in conjunction with laser pulses for pump-probe experiments, which is a time-resolved experiment method for capturing the temporal evolution of the pumped process. Periodic X-ray pulses are provided by the synchrotron light source as detecting light (Probe), and laser pulses can be used as a pump to excite a target, which changes a certain property when excited. Pump-probe experiments re-quire a synchronized laser system to alter the delay time between X-ray pulses and laser pulses. It has been built a laser synchronizer and timing support system. One direct digital synthesizer (DDS) with fine delay adjustment can change the laser pump pulse relative to the X-ray pulse. The clock fanout buffer with output dividers provides the synchronized clocks required by the laser oscillator and laser source. An SBC (single-board computer) is employed as a control interface The software architecture is created using the EPICS framework, which is compatible with the TPS control system, and a GUI with the ability to adjust the time delay is created. The efforts will be described in this report.
Paper: THPG23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG23
About: Received: 14 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
THPG45
The onine radiation monitoring system for Hefei Advanced Light Facility
3366
An advanced online monitoring system with dual systems is being developing for Hefei Advanced Light Facility (HALF). One is based on the C language, which integrates data acquisition, storage and interface display. The other is based on EPICS system, which developed Input/Output Controller (IOC) and Operator Interface (OPI) for data acquisition and display. The two systems are based on Ethernet TCP / IP protocol for data communication, but they are independent. The on-line radiation monitoring system of Hefei Advanced Light Source (ORMSH) have the function of neutron and gamma dose monitoring and alarming. The ORMSH contains 160 monitors for workplace monitoring and environmental monitoring. Each monitor combines data collection, storage, automatic upload. two alarm methods will be adopted for dose interlocking in ORMSH: instantaneous dose rate alarming and cumulative dose alarming. This paper describes in detail the implementation of the system infrastructure and functions.
Paper: THPG45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG45
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPG56
The high-level software of the beam position limits detector system for the Advanced Photon Source upgrade storage ring
3390
A new Machine Protection System (MPS) and the Beam Position Limits Detector (BPLD) system are being developed for APS Upgrade (APS-U) accelerator storage ring. The MPS/BPLD system consists of one main MPS and 20 local MPS/BPLD controllers distributed around the ring, each local controller is located on every odd double sector. Each LMPS handles one double sector. Each double sector can be equipped up to seven Libera BPM electronics units. Each Libera unit processes up to four BPMs at Turn-by-Turn (TbT) rate. The Beam Position Limits Detector (BPLD) provides two types of protections: BPLD-ID and BPLD-BM for insertion device (ID) front-end (FE) and bending magnet (BM) incident radiation protection respectively. We select bumps using orbit feedback in a machine simulation to test the position limits of the system consistent with accelerator physics requirements for stable beam. This paper introduces the high level software implementation of APS-U BPLD-ID and BPLD-BM validation.
Paper: THPG56
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG56
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
THPG82
Using a particle-in-cell model for accelerator control room applications
3461
Many accelerator control rooms rely on envelope models to simulate beam dynamics because they are fast and accurate at tracking the beam core. Particle-in-Cell (PIC) models, however, can track particles inside and outside the core and, with the improvements of computers, are now fast enough to be used in control rooms. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is currently developing a tool to use a Particle-in-Cell model for control room applications. This report covers the progress so far and the future goals of using PyORBIT, a Particle-in-Cell simulation model, in the SNS control room.
Paper: THPG82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG82
About: Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPS23
Design and fabrication of the automation system in TLS BL07A end station
3785
The end station for TLS beamline 07A (BL07A) primarily serves industrial applications, catering to various sample inspection requirements within the industry in multiple modes. In the past, manual switching of modes for different experiments was time-consuming, requiring the re-installment a lot components and taking long time to readjust the gas proportion for different samples. To enhance the efficiency of the BL07A experimental station, an automated design has been implemented, utilizing multiple self-made motorized platforms. Another crucial aspect for improved experimental efficiency is the use of a combination of vacuum pumps, flow meters, and electromagnetic valves for gas replacement system, significantly reducing the time needed for this process. The automated system is currently operational, reducing the operation time for experimental equipment switching from several hours to two minutes. The execution time for the gas replacement process has also been drastically reduced from 100 minutes to 5 minutes.
Paper: THPS23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS23
About: Received: 10 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024