Osama Mohsen (Argonne National Laboratory)
SUPG016
Measurement of stability diagrams in the IOTA ring at Fermilab
use link to access more material from this paper's primary code
Nonlinear focusing elements can enhance the stability of particle beams in high-energy colliders through Landau Damping, by means of the tune spread which is introduced. Here we discuss an experiment at Fermilab's Integrable Optics Test Accelerator (IOTA) which investigates the influence of nonlinear focusing elements, such as octupoles, on the beam’s transverse stability. In this experiment, we employ an anti-damper, an active transverse feedback system, as a controlled mechanism to induce coherent beam instability. By utilizing the anti-damper we can examine the impact of a nonlinear focusing element on the beam's transverse stability. The stability diagram, a tool used to determine the system's stability, is measured using a recently demonstrated method at the LHC. The experiment at IOTA adds insight towards this stability diagram measurement method by supplying a reduced machine impedance to investigate the machine impedance’s effect on the stability diagram, as well as by aiming to map out the full stability diagram by using a large phase range of the anti-damper. From this experiment in IOTA, we present the first results of stability diagram analysis with varying octupole currents.
  • M. Bossard, Y. Kim
    University of Chicago
  • N. Eddy, R. Ainsworth
    Fermi National Accelerator Laboratory
  • O. Mohsen
    Argonne National Laboratory
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR48
About:  Received: 20 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
WEPR48
Measurement of stability diagrams in the IOTA ring at Fermilab
2604
Nonlinear focusing elements can enhance the stability of particle beams in high-energy colliders through Landau Damping, by means of the tune spread which is introduced. Here we discuss an experiment at Fermilab's Integrable Optics Test Accelerator (IOTA) which investigates the influence of nonlinear focusing elements, such as octupoles, on the beam’s transverse stability. In this experiment, we employ an anti-damper, an active transverse feedback system, as a controlled mechanism to induce coherent beam instability. By utilizing the anti-damper we can examine the impact of a nonlinear focusing element on the beam's transverse stability. The stability diagram, a tool used to determine the system's stability, is measured using a recently demonstrated method at the LHC. The experiment at IOTA adds insight towards this stability diagram measurement method by supplying a reduced machine impedance to investigate the machine impedance’s effect on the stability diagram, as well as by aiming to map out the full stability diagram by using a large phase range of the anti-damper. From this experiment in IOTA, we present the first results of stability diagram analysis with varying octupole currents.
  • M. Bossard, Y. Kim
    University of Chicago
  • N. Eddy, R. Ainsworth
    Fermi National Accelerator Laboratory
  • O. Mohsen
    Argonne National Laboratory
Paper: WEPR48
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPR48
About:  Received: 20 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC64
Impedance model for the Fermilab Recycler ring
3167
We present an impedance model of the Fermilab Recycler ring using PyHEADTAIL. The model is constructed by incorporating analytical expressions for the wakefields of beamline components that contribute significantly to impedance. The effects of indirect space charge are included as an inductive impedance. Benchmarking against measured coherent Betatron tune shifts, the impedance model is found to capture 73.4% of observed tune shifts. Our findings serve as a stepping stone for the development of a realistic impedance model crucial for studying impedance-driven instabilities at higher intensity.
  • B. Gladwyn
    University of Cambridge
  • M. Duncan
    University of Chicago
  • O. Mohsen
    Argonne National Laboratory
  • R. Ainsworth
    Fermi National Accelerator Laboratory
Paper: THPC64
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC64
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote