Lei Guo (Nagoya University)
SUPC055
Development of new method of NEA Activation with Cs-Sb-O
use link to access more material from this paper's primary code
Negative Electron Affinity (NEA) activated GaAs photocathodes are the only one capable of generating spin-polarized electron beam larger than 90%. However, the NEA layer currently made from mainstream cesium (Cs) and oxygen (O) is chemically unstable, the NEA-GaAs photocathode has a rapid QE degradation over time or electron beam. As a result, it requires an operating vacuum pressure of 1e-9 Pa and has a short lifetime. Recently, a new NEA layer using heterojunctions with semiconductor thin film of alkali metals and antimony or tellurium has been proposed. The latest research shows that the NEA activation method using Cs-Sb-O is made by co-evaporation of Cs, O2 and Sb. However, the co-evaporation method has high demands on equipment. Therefore, in this work, we attempted to fabricate a Cs-Sb-O NEA layer using a separation evaporation method. Specifically, we attempted four recipes and successfully fabricated the NEA layer by Cs-Sb-O. We also evaluated the dependence of QE on Sb thickness and found that it is easy to form a NEA layer with 0.2 nm of Sb.
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC62
About: Received: 09 May 2024 — Revised: 23 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
WEPC50
GaAs cathode activation with Cs-CsO-Sb thin film
2076
GaAs cathodes are unique devices which generate a spin-polarized electron beam by the photoelectric effect when illuminated with a circularly polarized laser. Thin-film Negative Electron Affinity (NEA) surfaces have an essential role in spin polarized beam production, but they have limited lifetimes. In this study, we activate GaAs as an NEA cathode by evaporating Cs, Cs-O, and Sb metal on its cleaned surface. Here we present the latest experimental results of quantum efficiency measurements taken after evaporative deposition of multi-alkali thin-film surfaces.
Paper: WEPC50
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC50
About: Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
WEPC62
Development of new method of NEA Activation with Cs-Sb-O
2109
Negative Electron Affinity (NEA) activated GaAs photocathodes are the only one capable of generating spin-polarized electron beam larger than 90%. However, the NEA layer currently made from mainstream cesium (Cs) and oxygen (O) is chemically unstable, the NEA-GaAs photocathode has a rapid QE degradation over time or electron beam. As a result, it requires an operating vacuum pressure of 1e-9 Pa and has a short lifetime. Recently, a new NEA layer using heterojunctions with semiconductor thin film of alkali metals and antimony or tellurium has been proposed. The latest research shows that the NEA activation method using Cs-Sb-O is made by co-evaporation of Cs, O2 and Sb. However, the co-evaporation method has high demands on equipment. Therefore, in this work, we attempted to fabricate a Cs-Sb-O NEA layer using a separation evaporation method. Specifically, we attempted four recipes and successfully fabricated the NEA layer by Cs-Sb-O. We also evaluated the dependence of QE on Sb thickness and found that it is easy to form a NEA layer with 0.2 nm of Sb.
Paper: WEPC62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-WEPC62
About: Received: 09 May 2024 — Revised: 23 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024