Kirsten Deitrick (Thomas Jefferson National Accelerator Facility)
SUPC023
Beam correction for multi-pass arcs in FFA@CEBAF: status update
use link to access more material from this paper's primary code
This work examines the multi-pass steering of six electron beams in an FFA arc ranging from approximately 10.5 GeV to 22 GeV. Shown here is an algorithm based on singular value decomposition (SVD) to successfully steer all six beams through the arc given precise knowledge of all beam positions at each of one hundred and one diagnostic locations with one hundred individual corrector magnets: that is successive application of SVD to different 100 × 101 response matrices—one for each beam energy. Further, a machine learning scheme is developed which only requires knowledge of the energy-averaged beam position at each location to provide equivalent steering. Extension of this scheme to other beam optics quantities as well as transverse and longitudinal coupling is explored.
  • A. Coxe
    Jefferson Lab
  • J. Benesch, K. Price, K. Deitrick, R. Bodenstein, T. Satogata
    Thomas Jefferson National Accelerator Facility
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC23
About:  Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC42
Development of FFA RLA design concept
A single wide-momentum-acceptance FFA beam line allows for recirculating a beam several times through a linac. Such a scheme provides an efficient path towards high-energy, high-power continuous beams. This paper describes the development of a conceptual design of an FFA RLA focusing on but not limited to a high-power hadron beam case. We present a complete optics design including arc, linac, and matching sections. The matching sections are implemented following the adiabatic approach whereby matching of all beam passes occurs simultaneously within a single beam line. Harmonic correction is applied for precise orbit and optics control of the individual passes. We discuss approaches to optimization of the linac timing and control of the longitudinal beam dynamics.
  • V. Morozov
    Oak Ridge National Laboratory
  • A. Bogacz, A. Seryi, B. Gamage, D. Turner, D. Khan, G. Krafft, K. Price, K. Deitrick, R. Kazimi, R. Bodenstein, T. Satogata, Y. Roblin
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
  • D. Trbojevic, F. Meot, J. Berg, S. Brooks
    Brookhaven National Laboratory
  • G. Hoffstaetter
    Cornell University (CLASSE)
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
  • C. Montag, A. Zaltsman, A. Fedotov, B. Podobedov, B. Parker, C. Folz, C. Liu, D. Marx, D. Weiss, D. Xu, D. Kayran, D. Holmes, E. Aschenauer, E. Wang, F. Willeke, F. Meot, G. Wang, G. Mahler, G. Robert-Demolaize, H. Huang, H. Lovelace III, H. Witte, I. Pinayev, J. Berg, J. Kewisch, J. Tuozzolo, K. Smith, K. Drees, M. Sangroula, M. Blaskiewicz, M. Minty, Q. Wu, R. Gupta, R. Than, S. Seletskiy, S. Peggs, S. Tepikian, S. Nayak, W. Xu, W. Bergan, W. Fischer, X. Gu, Y. Li, Y. Luo, Z. Conway
    Brookhaven National Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, J. Jamilkowski, N. Tsoupas, P. Baxevanis, S. Nagaitsev, S. Verdu-Andres, V. Ptitsyn, V. Ranjbar, V. Shmakova
    Brookhaven National Laboratory (BNL)
  • A. Seryi, B. Gamage, E. Nissen, E. Daly, K. Deitrick, R. Rimmer, S. Philip, S. Benson, T. Michalski, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • D. Sagan, G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
  • E. Gianfelice-Wendt
    Fermi National Accelerator Laboratory
  • F. Lin, V. Morozov
    Oak Ridge National Laboratory
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • M. Sullivan, Y. Cai, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • Y. Hao
    Facility for Rare Isotope Beams
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About:  Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPR07
FFA@CEBAF beam transport error and tolerance simulation studies
471
The Continuous Electron Beam Accelerator Facility (CEBAF) is a 12 GeV recirculating electron accelerator at the Thomas Jefferson National Accelerator Facility (JLAB). Major upgrades to the accelerator are being investigated which include a new 650 MeV injection beamline and state-of-the-art fixed-field alternating (FFA) gradient recirculation arcs. The upgrade will extend the energy of the electron beam to over 20 GeV. In this paper, we provide an error and tolerance simulation study of the amended beam optics transport of the existing accelerator tuned for 22 GeV operation. The study is conducted with the particle tracking codes elegant and Bmad in two parts. In the first part, we treat each section of the accelerator (electromagnetic arcs and linacs) modularly with ideal conditions at the beginning. The second part is a pseudo start-to-end (S2E) simulation with accumulated errors propagating from one beamline to the next.
  • D. Khan, R. Bodenstein, A. Bogacz, K. Deitrick, B. Gamage, D. Turner
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
Paper: MOPR07
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR07
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPR08
Current status of the FFA@CEBAF energy upgrade
474
An upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility (JLAB) to extend its energy reach from 12 GeV to 22 GeV is being explored. The upgrade pushes the boundaries of the current CEBAF facilities and will require several state-of-the-art beamline components. The first of which is nonscaling Fixed Field Alternating (FFA) Gradient recirculation arcs, using novel Halbach-style permanent magnets. These new arcs would replace the current highest-energy recirculating arcs and allow up to six new beam passes spanning approximately a factor of two in energy. Matching into these arcs will require the design of splitter bend systems proceeding the north and south linac sections. Matching from these arcs into the proceeding linac section will be achieved using a novel transition section. Additionally, several major changes to the existing CEBAF accelerator will be implemented including a 650 MeV recirculating injector, a new multi-pass linac optics design based on a triplet focusing lattice, and a newly designed spreader/recombiner bend systems to accommodate the higher energy requirement.
  • D. Khan, A. Bogacz, A. Seryi, B. Gamage, D. Turner, K. Price, K. Deitrick, R. Kazimi, R. Bodenstein, T. Satogata, Y. Roblin
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
  • D. Trbojevic, F. Meot, J. Berg, S. Brooks
    Brookhaven National Laboratory
  • G. Hoffstaetter
    Cornell University (CLASSE)
  • V. Morozov
    Oak Ridge National Laboratory
Paper: MOPR08
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR08
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC23
Beam correction for multi-pass arcs in FFA@CEBAF: status update
1057
This work examines the multi-pass steering of six electron beams in an FFA arc ranging from approximately 10.5 GeV to 22 GeV. Shown here is an algorithm based on singular value decomposition (SVD) to successfully steer all six beams through the arc given precise knowledge of all beam positions at each of one hundred and one diagnostic locations with one hundred individual corrector magnets: that is successive application of SVD to different 100 × 101 response matrices—one for each beam energy. Further, a machine learning scheme is developed which only requires knowledge of the energy-averaged beam position at each location to provide equivalent steering. Extension of this scheme to other beam optics quantities as well as transverse and longitudinal coupling is explored.
  • A. Coxe
    Jefferson Lab
  • J. Benesch, K. Price, K. Deitrick, R. Bodenstein, T. Satogata
    Thomas Jefferson National Accelerator Facility
Paper: TUPC23
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC23
About:  Received: 15 May 2024 — Revised: 17 May 2024 — Accepted: 17 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC24
Summary of Jefferson Lab LDRD on FFA@CEBAF beam dynamics simulations
1060
As Thomas Jefferson National Accelerator Facility (Jefferson Lab) looks toward the future, we are considering expanding our energy reach by using Fixed-Field Alternating Gradient (FFA) technology. Significant efforts have been made to design a hybrid accelerator which combines conventional recirculating electron LINAC design with permanent magnet-based FFA technology to increase the number of beam recirculations, and thus the energy. In an effort to further this progress, Jefferson Lab awarded a Laboratory Directed Research and Development (LDRD) grant to focus not on the design, but on detailed simulations of the designs created by the larger collaboration. This document will summarize the work performed during this LDRD, and direct the reader to other proceedings which describe elements of the work in greater detail.
  • R. Bodenstein, A. Bogacz, K. Deitrick, D. Khan, K. Price, D. Turner
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
Paper: TUPC24
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC24
About:  Received: 10 May 2024 — Revised: 21 May 2024 — Accepted: 22 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC43
Optimization of cooling distribution of the EIC SHC cooler ERL
1104
The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will use strong hadron cooling to maintain the beam brightness and high luminosity during long collision experiments. An Energy Recovery Linac is used to deliver the high-current high-brightness electron beam for cooling. For the best cooling effect, the electron beam requires low emittance, small energy spread, and uniform longitudinal distribution. In this work, we simulate and optimize the longitudinal laser-beam distribution shaping at the photo-cathode, modeling space charge forces accurately. Machine parameters such as RF cavity phases are optimized in conjunction with the beam distribution using a genetic optimizer. We demonstrate the improvement to the cooling distribution in key parameters.
  • N. Wang
    Cornell University
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford
    Xelera Research LLC
  • D. Sagan, G. Hoffstaetter
    Cornell University (CLASSE)
  • E. Wang, W. Bergan
    Brookhaven National Laboratory
  • I. Neththikumara, K. Deitrick, S. Benson, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC43
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC43
About:  Received: 15 May 2024 — Revised: 22 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC45
A preliminary feasibility study on multi-cavity cryomodule integration for the Electron Ion Collider energy recover linac cooler
1111
The Electron-Ion Collider (EIC) is a cutting-edge accelerator designed to collide highly polarized electrons and ions. For enhanced luminosity, the ion beam is cooled via an electron beam sourced from an energy recovery linac (ERL). The current ERL design accommodates one RF cavity per cryomodule, presenting both beam transport and cost-related challenges. This study investigates the feasibility of reducing the cavity size to accommodate two cavities within a single cryomodule. We analyze two compact cavity design options through frequency scaling, assuming constant loaded quality factor Q and R/Q scaling proportional to the square of the frequency ratio. Our analytical and tracking Beam BreakUp (BBU) model predicts the threshold current for each option. While a smaller cavity footprint is advantageous, maintaining sufficient damping of Higher Order Modes (HOMs) is crucial. We compare the HOM damping effectiveness of the proposed compact design to the existing configuration, which achieves sufficient damping within a slightly larger footprint.
  • S. Setiniyaz, I. Neththikumara, J. Guo, K. Deitrick, T. Satogata, S. Benson
    Thomas Jefferson National Accelerator Facility
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, N. Taylor
    Xelera Research LLC
  • N. Sereno
    Argonne National Laboratory
Paper: TUPC45
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC45
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THYD1
Coherent electron cooling physics for the EIC
2937
In order to prevent emittance growth during long stores of the proton beam at the future Electron-Ion Collider (EIC), we need to have some mechanism to provide fast cooling of the dense proton beams. One promising method is coherent electron cooling (CeC), which uses an electron beam to both ``measure'' the positions of protons within the bunch and then apply energy kicks which tend to reduce their longitudinal and transverse actions. In this work, we discuss the underlying physics of this process. We then discuss simulations which constrain the electrons to move only longitudinally in order to perform fast optimizations and long-term tracking of the bunch evolution, and benchmark these results against fully 3D codes. Additionally, we discuss practical challenges, including the necessity of a high-quality electron beam and sub-micron alignment of the electrons and protons.
  • W. Bergan, D. Xu, E. Wang, G. Wang, J. Ma, M. Blaskiewicz
    Brookhaven National Laboratory
  • C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, J. Conway, N. Taylor
    Xelera Research LLC
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • K. Deitrick, S. Benson
    Thomas Jefferson National Accelerator Facility
  • N. Wang
    Cornell University
  • P. Baxevanis
    Brookhaven National Laboratory (BNL)
Slides: THYD1
Paper: THYD1
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THYD1
About:  Received: 15 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC37
Resonant matching section for CEBAF energy upgrade
3075
Thomas Jefferson National Accelerator Facility (Jefferson Lab) currently studies the feasibility of upgrading its energy to 22GeV. It considers addition of six more linac passes. The highest energy passes will share two new arcs designed using the Fixed-Field Alternating Gradient (FFA) technology. The FFA arcs are built using permanent combined-function magnets. They will be connected to the linacs through transition sections that will match the optics of all six passes to the linacs. With the high number of constraints and the limited space available, we are investigating a parametric resonance technique to match the optics quasi-independently at each energy. A resonance is excited at each individual energy to selectively control its optics. The resonant dipole and quadrupole kick harmonics are imposed for all energies simultaneously using Panofsky corrector magnets placed throughout the FFA arcs. This paper presents the current progress on that transition section design.
  • B. Gamage, A. Bogacz, A. Seryi, D. Turner, D. Khan, E. Nissen, G. Krafft, K. Price, K. Deitrick, R. Kazimi, R. Bodenstein, T. Satogata, Y. Roblin
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
  • D. Trbojevic, F. Meot, J. Berg, S. Brooks
    Brookhaven National Laboratory
  • G. Hoffstaetter
    Cornell University (CLASSE)
  • V. Morozov
    Oak Ridge National Laboratory
Paper: THPC37
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC37
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC39
Horizontal splitter design for FFA@CEBAF energy upgrade: current status
3082
Thomas Jefferson National Accelerator Facility (Jefferson Lab) is currently studying the feasibility of an energy upgrade based upon Fixed-Field Alternating Gradient (FFA) permanent magnet technology. The current plan is to replace the highest-energy recirculation arcs with FFA arcs, increasing the total number of beam recirculations, thus the energy. In order to accommodate multiple passes in the FFA arcs, horizontal splitters are being designed to control the beam parameters entering the FFA arcs, as well as time-of-flight and R56. In the current design, six passes will recirculate through the FFA arcs, necessitating the design of six independent beamlines to control the optics and beam dynamics matching into the arcs. These beamlines must fit into the current CEBAF tunnel while allowing for personnel and equipment access. They must also be flexible enough to accommodate the beam under realistic operational conditions and fluctuations. The constraints on the system are highly restrictive, complicating the design. This document will describe the current state of the design and indicate the work remaining for a complete conceptual design.
  • R. Bodenstein, J. Benesch, K. Deitrick, B. Freeman, B. Gamage, R. Kazimi, D. Khan, K. Price, Y. Roblin, T. Satogata, B. Schaumloffel
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
  • J. Berg
    Brookhaven National Laboratory
Paper: THPC39
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC39
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC40
Development of an ERL for coherent electron cooling at the Electron-Ion Collider
3086
The Electron-Ion Collider (EIC) is currently under development to be built at Brookhaven National Lab and requires cooling during collisions in order to preserve the quality of the hadron beam despite degradation due to intra-beam scattering and beam-beam effect. An Energy Recovery Linac (ERL) is being designed to deliver the necessary electron beam for Coherent electron Cooling (CeC) of the hadron beam, with an electron bunch charge of 1 nC and an average current of 100 mA; two modes of operation are being developed for 150 and 55 MeV electrons, corresponding to 275 and 100 GeV protons. The injector of this Strong Hadron Cooler ERL (SHC-ERL) is shared with the Precooler ERL, which cools lower energy proton beams via bunched beam cooling, as used in the Low Energy RHIC electron Cooling (LEReC). This paper reviews the current state of the design.
  • K. Deitrick, I. Neththikumara, S. Setiniyaz, S. Benson, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • A. Fedotov, D. Xu, D. Kayran, E. Wang, W. Bergan
    Brookhaven National Laboratory
  • B. Dunham, C. Mayes
    SLAC National Accelerator Laboratory
  • C. Gulliford, J. Conway, K. Smolenski, N. Taylor, R. Eichhorn
    Xelera Research LLC
  • N. Sereno
    Argonne National Laboratory
  • N. Wang
    Cornell University
  • V. Kostroun
    Cornell University (CLASSE)
Paper: THPC40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPC40
About:  Received: 15 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPC84
FFA@CEBAF beam transport error and tolerance simulation studies
use link to access more material from this paper's primary code
The Continuous Electron Beam Accelerator Facility (CEBAF) is a 12 GeV recirculating electron accelerator at the Thomas Jefferson National Accelerator Facility (JLAB). Major upgrades to the accelerator are being investigated which include a new 650 MeV injection beamline and state-of-the-art fixed-field alternating (FFA) gradient recirculation arcs. The upgrade will extend the energy of the electron beam to over 20 GeV. In this paper, we provide an error and tolerance simulation study of the amended beam optics transport of the existing accelerator tuned for 22 GeV operation. The study is conducted with the particle tracking codes elegant and Bmad in two parts. In the first part, we treat each section of the accelerator (electromagnetic arcs and linacs) modularly with ideal conditions at the beginning. The second part is a pseudo start-to-end (S2E) simulation with accumulated errors propagating from one beamline to the next.
  • D. Khan, R. Bodenstein, A. Bogacz, K. Deitrick, B. Gamage, D. Turner
    Thomas Jefferson National Accelerator Facility
  • A. Coxe
    Jefferson Lab
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPR07
About:  Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS57
Radiation dose simulations for Jefferson Lab’s permanent magnet resiliency LDRD study
3872
In late 2023, Thomas Jefferson National Accelerator Facility (Jefferson Lab) funded a Laboratory Directed Research and Development (LDRD) grant dedicated to investigating the impact of radiation on permanent magnet materials. This research initiative is specifically geared towards assessing materials slated for use in the CEBAF energy upgrade. The experimental approach involves strategically placing permanent magnet samples throughout the accelerator, exposing them to varying radiation doses. The simulation code BDSIM is used to first validate the data and then to simulate the effects on future higher energy passes to study the degradation effects on the permanent magnets. In this paper we present the progress of that work.
  • B. Gamage, E. Nissen, K. Deitrick, R. Bodenstein
    Thomas Jefferson National Accelerator Facility
Paper: THPS57
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS57
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS58
Permanent magnet resiliency in CEBAF’s radiation environment: LDRD grant status and plans
3875
As the FFA@CEBAF energy upgrade study progresses, it is important to investigate the impact of radiation exposure on the permanent magnet materials to be used in the upgraded fixed field alternating gradient (FFA) arcs. To address this, Jefferson Lab has awarded a Laboratory Directed Research and Development (LDRD) grant to study the resiliency of several permanent magnet materials placed in a radiation environment similar to that in which they are expected to operate. Samples of NdFeB and SmCo are to be placed alongside appropriate dosimetry in a variety of radiation environments in the beam enclosure and experimental halls at CEBAF. The magnet degradation will be measured, and extrapolated to the higher energies expected during operations after the energy upgrade. This document will describe the current status of the LDRD study, as well as describe the upcoming plans. It will also direct the readers to other proceedings which further detail the work thus far.
  • R. Bodenstein, K. Deitrick, B. Gamage, D. Hamlette, J. Meyers, E. Nissen, N. Wilson, B. Mosbrucker, J. Gubeli
    Thomas Jefferson National Accelerator Facility
  • S. Brooks
    Brookhaven National Laboratory
Paper: THPS58
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS58
About:  Received: 10 May 2024 — Revised: 16 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
THPS59
Design and instrumentation for permanent magnet samples exposed to a radiation environment
3879
This work is part of a larger program to study the effects of radiation on permanent magnets in an accelerator environment. In order to be sure that the permanent magnet samples are accurately placed, measured, and catalogued we have developed a system of sample racks, holders and measuring apparatuses. We have combined these holders and measurement racks with electronics to allow a single computer to catalogue the position and intensity of the magnet measurements. We outline the design of the apparatus, the collection software, and the methodology we will use to collect the data.
  • E. Nissen, B. Gamage, J. Gubeli, K. Deitrick, R. Bodenstein
    Thomas Jefferson National Accelerator Facility
Paper: THPS59
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS59
About:  Received: 14 May 2024 — Revised: 17 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote