Joshua Yoskowitz (Los Alamos National Laboratory)
TUPC58
Beam optics modeling for the LANSCE proton storage ring
1133
The proton storage ring (PSR) upgrade for the LANSCE Modernization Project aims to minimize the yearly maintenance outage by minimizing beam loss. Several improvements could potentially impact the beam dynamics in the PSR, including a larger coated beam pipe and new buncher, injection, and extraction systems. The larger diameter, from 4” to 6”, will directly impact the beam dynamics due to an increased pole-to-pole gap height within the dipoles and quadrupoles, which would in turn increase their effective length and alter their fringe field profiles. In this work, a simulation model of the PSR ring was developed using the particle tracking code pyORBIT to study the effect of different beam pipe diameters on the beam optics. The parameters of the injected beam are derived from an existing model of the PSR injection system, and the resulting beam parameters will be used in a simulation model of the extraction system, to be presented separately at the conference. The pyORBIT results were benchmarked against beam optics simulations created using accelerator codes including MAD-X, etc. The pyORBIT simulation model of the PSR ring will be described, and the results will be presented at the conference.
  • J. Yoskowitz, E. Huang, E. Henestroza, H. Xu, J. Upadhyay, S. Sosa Guitron, C. Taylor, J. Lewellen
    Los Alamos National Laboratory
Paper: TUPC58
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC58
About:  Received: 14 May 2024 — Revised: 16 May 2024 — Accepted: 16 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPS35
Improved modelling and characterization of the LANSCE PSR stripper foils
1722
This paper will describe efforts to simulate and test materials for the LANSCE PSR stripper foils. Stripper foils convert H- beams to H+ as part of the charge-exchange injection process in the LANSCE PSR that produces high intensity proton beams. The foil properties directly affect the total current and activation in the ring, and their overall robustness also determines the types of experiments that can be done, as the number of available foils is limited and some modes are particularly destructive to the foils. We will describe a preliminary approach to modelling, characterizing, testing and optimizing PSR foils performance and lifetime given the extreme heat and radiation conditions which can heavily constrain both characterization and testing, and note potential opportunities for a PSR upgrade as part of LAMP.
  • A. Alexander, J. Lewellen, M. Kay, N. Regis, C. Taylor, R. Thornton, J. Yoskowitz
    Los Alamos National Laboratory
Paper: TUPS35
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS35
About:  Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote