Jordi Marcos (ALBA-CELLS Synchrotron)
TUPG02
ALBA II accelerator upgrade project status
1220
ALBA is working on the upgrade project that shall transform the actual storage ring, in operation since 2012, into a 4th generation light source, in which the soft X-rays part of the spectrum shall be diffraction limited. The project was launched in 2021 with an R&D budget to build prototypes of the more critical components. The storage ring upgrade is based on a MBA lattice which has to comply with several constraints imposed by the decision of maintaining the same circumference (269 m), the same number of cells (16), the same beam energy (3 GeV), and as many of the source points as possible unperturbed. At present, the lattice optimization, iterating with the technical constraints of space and performance, is ongoing. This paper presents the status of the project, with the present proposed lattice, the proposed design for magnets, vacuum chambers and girders, the proposed RF system with fundamental and harmonics cavities, and the general context of the upgrade.
Paper: TUPG02
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPG02
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 24 May 2024 — Issue date: 01 Jul 2024
TUPR40
Development of prototype magnets for the ultralow emittance storage ring ALBA II
1502
The ALBA synchrotron light source is in the process of a significant upgrade, aiming to become a fourth-generation facility by reducing its emittance by at least 20 times. The initial phase of this project involves a comprehensive prototyping program designed to validate various critical technologies, such as magnets, vacuum systems, girders, etc., essential for facilitating the impending upgrade. This paper focuses on the development of the prototype magnets to implement the MBA lattice designed by our Beam Dynamics group. The lattice presents unique challenges, notably a remarkable degree of compactness necessitating magnet-to-magnet distances of just a few centimeters. Additionally, stringent strength requirements are imposed on both the quadrupolar (up to 110 T/m) and the sextupolar (up to 5000 T/m²) magnets. In this paper we will describe the design details of the initial set of resistive-type prototypes, as well as the preliminary efforts to develop alternative designs making use of permanent magnets. This dual-track approach reflects our dedication to both conventional methods and innovative solutions for the upgraded storage ring.
Paper: TUPR40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPR40
About: Received: 15 May 2024 — Revised: 18 May 2024 — Accepted: 18 May 2024 — Issue date: 01 Jul 2024