Jonathan Unger (Cornell University (CLASSE))
SUPC011
Dynamic aperture of the RCS during bunch merges
use link to access more material from this paper's primary code
The Rapid Cycling Synchrotron (RCS) of the Electron Ion Collider (EIC) will be used to accelerate polarized electrons from 400 MeV to a top energy of 5, 10, or 18 GeV before injecting into the Electron Storage Ring. At 1 GeV, the RCS will perform a merge of two bunches into one, adding longitudinal dynamics that effects the dynamic aperture, depending on the merge parameters. In this paper, results for different merge models will be compared, as well as finding the relationship between the merge parameters of the RCS and its dynamic aperture.
  • D. Kuzovkova, G. Hoffstaetter, J. Unger, L. Smith
    Cornell University (CLASSE)
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC06
About:  Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC67
The EIC accelerator: design highlights and project status
214
The design of the electron-ion collider (EIC) at Brookhaven National Laboratory is well underway, aiming at a peak electron-proton luminosity of 10e+34 cm^-1·sec^-1. This high luminosity, the wide center-of-mass energy range from 29 to 141 GeV (e-p) and the high level of polarization require innovative solutions to maximize the performance of the machine, which makes the EIC one of the most challenging accelerator projects to date. The complexity of the EIC will be discussed, and the project status and plans will be presented.
  • C. Montag, A. Zaltsman, A. Fedotov, B. Podobedov, B. Parker, C. Folz, C. Liu, D. Marx, D. Weiss, D. Xu, D. Kayran, D. Holmes, E. Aschenauer, E. Wang, F. Willeke, F. Meot, G. Wang, G. Mahler, G. Robert-Demolaize, H. Huang, H. Lovelace III, H. Witte, I. Pinayev, J. Berg, J. Kewisch, J. Tuozzolo, K. Smith, K. Drees, M. Sangroula, M. Blaskiewicz, M. Minty, Q. Wu, R. Gupta, R. Than, S. Seletskiy, S. Peggs, S. Tepikian, S. Nayak, W. Xu, W. Bergan, W. Fischer, X. Gu, Y. Li, Y. Luo, Z. Conway
    Brookhaven National Laboratory
  • A. Blednykh, C. Hetzel, D. Gassner, J. Jamilkowski, N. Tsoupas, P. Baxevanis, S. Nagaitsev, S. Verdu-Andres, V. Ptitsyn, V. Ranjbar, V. Shmakova
    Brookhaven National Laboratory (BNL)
  • A. Seryi, B. Gamage, E. Nissen, E. Daly, K. Deitrick, R. Rimmer, S. Philip, S. Benson, T. Michalski, T. Satogata
    Thomas Jefferson National Accelerator Facility
  • D. Sagan, G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
  • E. Gianfelice-Wendt
    Fermi National Accelerator Laboratory
  • F. Lin, V. Morozov
    Oak Ridge National Laboratory
  • G. Stupakov
    xLight Incorporated
  • J. Qiang
    Lawrence Berkeley National Laboratory
  • M. Sullivan, Y. Cai, Y. Nosochkov
    SLAC National Accelerator Laboratory
  • Y. Hao
    Facility for Rare Isotope Beams
Paper: MOPC67
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC67
About:  Received: 07 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
MOPC82
Dynamic aperture of the EIC electron storage ring
266
Design of the electron-ion collider (EIC) at Brookhaven National Laboratory continues to be optimized. Particularly, the collider storage ring lattices have been updated. Dynamic aperture of the evolving lattices must be kept sufficiently large, as required. In this paper, we discuss the collider Electron Storage Ring, where the lattice updates include improvements of the interaction region layout and arc dipole configuration, reduced number of magnet types, and changes related to the use of existing magnets. Optimization of non-linear chromaticity correction for an updated 18 GeV lattice and the latest estimates of dynamic aperture with errors are presented.
  • Y. Nosochkov, Y. Cai
    SLAC National Accelerator Laboratory
  • C. Montag, D. Marx, H. Witte, J. Berg, J. Kewisch, S. Peggs, S. Tepikian, Y. Li
    Brookhaven National Laboratory
  • G. Hoffstaetter, J. Unger, M. Signorelli
    Cornell University (CLASSE)
Paper: MOPC82
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-MOPC82
About:  Received: 16 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPC06
Dynamic aperture of the RCS during bunch merges
1003
The Rapid Cycling Synchrotron (RCS) of the Electron Ion Collider (EIC) will be used to accelerate polarized electrons from 400 MeV to a top energy of 5, 10, or 18 GeV before injecting into the Electron Storage Ring. At 1 GeV, the RCS will perform a merge of two bunches into one, adding longitudinal dynamics that effects the dynamic aperture, depending on the merge parameters. In this paper, results for different merge models will be compared, as well as finding the relationship between the merge parameters of the RCS and its dynamic aperture.
  • D. Kuzovkova, G. Hoffstaetter, J. Unger, L. Smith
    Cornell University (CLASSE)
Paper: TUPC06
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPC06
About:  Received: 15 May 2024 — Revised: 23 May 2024 — Accepted: 23 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPG60
Dynamic aperture in a wiggler dominated ring electron cooler of the EIC
1390
The Ring Electron Cooler (REC) is currently under design for use in the Electron Ion Collider (EIC) for hadron cooling. In this device the hadrons are cooled by the electrons and the electrons are cooled through radiation damping, which is enhanced by a number of 4 meter-long wigglers with 2.4 T field. When optimizing the beam envelope, intra beam scattering and Touschek scattering are also considered. Using a field configuration with additional focusing to keep the emittance at an acceptable value, these wigglers make up a substantial portion of the ring, with the wiggler section contributing the majority of the ring’s chromaticity. In this paper, the effects of the REC’s unusual properties on dynamic aperture are analyzed and a correction scheme is proposed.
  • J. Unger, E. Hamwi, G. Hoffstaetter
    Cornell University (CLASSE)
  • J. Kewisch, S. Seletskiy
    Brookhaven National Laboratory
Paper: TUPG60
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPG60
About:  Received: 15 May 2024 — Revised: 20 May 2024 — Accepted: 20 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote
TUPS53
Optimization of AGS bunch merging with reinforcement learning
1782
The RHIC heavy ion program relies on a series of RF bunch merge gymnastics to combine individual source pulses into bunches of suitable intensity. Intensity and emittance preservation during these gymnastics require careful setup of the voltages and phases of RF cavities operating at several different harmonic numbers. The optimum setting tends to drift over time, degrading performance and requiring operator attention to correct. We describe a reinforcement learning approach to learning and maintaining an optimum configuration, accounting for the relevant RF parameters and external perturbations (e.g., a changing main dipole field) using a physics-based simulator at Brookhaven Alternating Gradient Synchrotron (AGS).
  • Y. Gao, K. Zeno, K. Brown, L. Nguyen, V. Schoefer
    Brookhaven National Laboratory
  • A. Kasparian
    Jefferson Lab
  • A. Edelen
    SLAC National Accelerator Laboratory
  • D. Sagan, E. Hamwi, G. Hoffstaetter, J. Unger, W. Lin
    Cornell University (CLASSE)
  • M. Schram
    Thomas Jefferson National Accelerator Facility
  • Y. Wang
    Rensselaer Polytechnic Institute
Paper: TUPS53
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-TUPS53
About:  Received: 14 May 2024 — Revised: 18 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
Cite: reference for this paper using: BibTeX, LaTeX, Text/Word, RIS, EndNote