Jeongseog Song (Facility for Rare Isotope Beams, Michigan State University)
THPG62
FRIB target thermal image processing for accurate temperature mapping
3409
The FRIB carbon disc target receives the primary beam at high power and produces rare isotope fragments. To avoid damaging the carbon disc target, it is rotated at 500 RPM and cooled. If these thermal management mechanisms fail, local temperatures on the target can increase to the point of material sublimation and structural failure. A thermal imaging camera was temperature calibrated and installed for the purpose of monitoring the target temperature map in real time. Various image processing strategies were deployed to improve the accuracy and usefulness of the resulting image. Processing stages include conversion from intensity to temperature, median filtering to remove dead pixels, and flat field correction to compensate for vignetting and edge effects.
Paper: THPG62
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPG62
About: Received: 15 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024
THPS40
Thermal-fluid analysis and operation of a low power water-cooled tilted beam dump at Facility for Rare Isotope Beams
3823
The Facility for Rare Isotope Beams is a high power heavy ion accelerator completed in April 2022. The FRIB accelerator was commissioned with acceleration of heavy ions to energies above 200 MeV/nucleon (MeV/u) that collide onto a rotating single-disk graphite target. The remaining beam is absorbed by a water-cooled static beam dump that is oriented at a 6 degrees angle with respect to the beam. The beam dump consists of the beam stopper made of machined Aluminum 2219 block, and 3D-printed inlet and outlet parts made of Aluminum 6061 that delivers the cooling water from utilities to the beam stopper and its return. This low power beam dump is designed for up to 10 kW beam power. This paper presents a discussion on the thermal-fluid behavior of the beam dump for various beam species and beam power.
Paper: THPS40
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS40
About: Received: 13 May 2024 — Revised: 19 May 2024 — Accepted: 19 May 2024 — Issue date: 01 Jul 2024
THPS41
Thermal analysis of rotating single slice graphite target system for FRIB
3827
The Facility for Rare Isotope Beams (FRIB) is a high power heavy ion accelerator facility at Michigan State University completed in 2022. Its driver linac is designed to accelerate all stable ions to energies above 200 MeV/u with beam power of up to 400 kW. Currently FRIB is operating at 10 kW delivering various primary beams. The target absorbs roughly 25% of the primary beam power and the rest is dissipated in the beam dump. This paper presents a brief overview of the current production target system and details the thermal analysis ANSYS simulations utilized for temperature and stress prediction. The existing single-slice rotating graphite target can accommodate up to 40 kW for lighter beams, with a planned transition to a multi-slice concept.
Paper: THPS41
DOI: reference for this paper: 10.18429/JACoW-IPAC2024-THPS41
About: Received: 09 May 2024 — Revised: 21 May 2024 — Accepted: 21 May 2024 — Issue date: 01 Jul 2024